Department

Biology

Document Type

Article

Publication Date

4-10-2008

Abstract

The peritrophic matrix (PM) lines the midgut of most insects, providing protection to the midgut epithelial cells while permitting passage of nutrients and water. Herein, we provide evidence that plant-mediated alteration of the PM contributes to the well-documented inhibition of fatal infection by Autographa californica multiple nucleopolyhedrovirus (AcMNPV) of Heliothis virescens F. larvae fed cotton foliage. We examined the impact of the PM on pathogenesis using a viral construct expressing a reporter gene (AcMNPV-hsp70/ lacZ) orally inoculated into larvae with either intact PMs or PMs disrupted by Trichoplusia ni granulovirus occlusion bodies containing enhancin, known to degrade insect intestinal mucin. Larvae possessing disrupted PMs displayed infection foci (lacZ signaling) earlier than those with intact PMs. We then examined PMs from larvae fed artificial diet or plant foliage using electron microscopy; foliage-fed larvae had significantly thicker PMs than diet-fed larvae. Moreover, mean PM width was inversely related to both the proportion of larvae with lacZ signaling at 18 h post-inoculation and the final percentage mortality from virus. Thus, feeding on foliage altered PM structure, and these foliage-mediated changes reduced baculoviral efficacy. These data indicate that the PM is an important factor determining the success of an ingested pathogen in foliage-fed lepidopteran larvae.

Publication Title

Journal of Insect Physiology

Publisher Statement

© 2008 Elsevier Ltd. All rights reserved.

DOI

10.1016/j.jinsphys.2008.02.005

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.