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Abstract 

Across the United States, bird populations have declined due to habitat loss. To better 

understand habitat use by birds, researchers observed populations at Jack Mountain Wildlife 

Management Area in southwest Arkansas. Students at Ouachita Baptist University surveyed 94 

point count locations to estimate species diversity (total number of species observed) and 

species abundance (total number of individuals observed). At each point, students recorded the 

percentage of tree canopy cover, ground cover, midstory cover, and shrub cover. These 

variables were used as explanatory variables in multiple regression analyses to determine 

which variables were influential in explaining variation in species diversity and species 

abundance.  Locations with higher species diversity had higher midstory cover (P=0.003) and 

lower canopy cover (P=0.020). Higher species abundance was found at locations with lower 

canopy cover (P<0.001). These findings suggest that the amount of canopy cover plays a 

substantial role in habitat use by breeding birds at Jack Mountain Wildlife Management Area. 

Understanding how to use statistics software is useful to many disciplines including the 

field of nursing. As a nursing student, I have learned that the statistical analysis performed in 

this study is applicable to research projects completed in the field of healthcare. The statistical 

software environment R, and its interface RStudio 2, can be used by anyone performing 

statistical analysis, creating tables or graphs, and analyzing data. There are many packages 

associated within R (R Core Team, 2020) that would be beneficial to nurses and nurse 

management conducting performance improvement projects where they collect and analyze 

data pertaining to patient care, infection rates, and patient satisfaction. 
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Introduction 

In the United States, the overall bird population is decreasing as more and more species 

populations decline (Rosenburg et al, 2019). Bird species are declining due to habitat loss 

caused by deforestation, climate change, and other human effects (Rosenburg et al, 2019).  The 

loss of birds in habitats can lead to serious consequences within these habitats. Birds are 

responsible for seed dispersal, pollination of plants, and controlling insect populations 

(Rosenburg et al, 2019). Birds are a key component of connecting ecosystems in a way other 

animals do not. Many bird species migrate seasonally taking them to multiple ecosystems in the 

same year. The decline in species population and diversity is a reversible problem (Rosenburg et 

al., 2019). To preserve bird populations, it is essential that large areas with overlapping habitats 

be preserved for the use of wildlife (Dietz et al, 2020). The Jack Mountain Wildlife Managment 

Area in southwestern Arkansas is a contiguous habitat, about 20,000 acres total (Ross 

Foundation, 2010). It is owned by the Ross Foundation and managed by the Arkansas 

Department of Fish and Game, with the goal of conservation of wildlife habitats. Previous 

research conducted by students from Ouachita Baptist University shows that the Jack Mountain 

Wildlife Managment Area is made up of pine, mixed, and deciduous forests, with pine-

dominated forests having more species diversity than deciduous or mixed woodlands (Pruett, 

2022). 

Using data collected from previous research students, I conducted a multivariate 

analysis on bird-species diversity and abundance to attempt to understand why pine habitats 

have greater diversity than other habitats. I examined the association between bird diversity 

and abundance with canopy coverage, shrub coverage, ground coverage, and midstory 
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coverage. I chose to measure these four variables because more complex habitats have been 

associated with higher diversity (Pruett, 2022).   I performed statistical analyses using the 

software R (R Core Team, 2020), which is a free-statistical environment that can do a variety of 

statistical analyses and create many different types of charts and graphs (which are 

incorporated into this study).  
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Methods 

Field methods 

To calculate bird species diversity and abundance, research students at Ouachita Baptist 

University went to 94 randomly selected point locations within Jack Mountain Wildlife 

Management Area in southwestern Arkansas (Fig. 1). At each point, all species heard or seen 

within a 50 m radius during a ten-minute survey window were recorded to enable estimation of 

species diversity and abundance (Bibby et al. 2000). Surveys were conducted within four hours 

of sunrise (Huff et al. 2000). 

Habitat complexity was also assessed at each of the point locations. Indices of 

vegetation structure were based on the following four measurements (Sam et al. 2019). Ground 

layer density (plants <0.5 m in height) was measured 15 times for each point using randomly 

chosen 1 m2 plots. Shrub density (plants 1-3 m in height) and mid-story density were measured 

in 5 areas per point using scatter plots. Canopy density was measured by photographing up 

through the canopy at 5 locations randomly chosen near the point.   
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Figure 1: Map of the 94 data collection points (yellow dots) at Jack Mountain Wildlife Management Area 

in southwestern Arkansas. Black line denotes the boundary of the wildlife management area.  

 

Statistical analyses 

A series of statistical tests was performed on the data collected at Jack Mountain 

Wildlife Management Area to examine the data for correlation between each of the 

explanatory variables (ground coverage, shrub coverage, canopy coverage, and midstory 

coverage) and the response variables (bird diversity and abundance). Prior to completing a 

multivariate analysis, we had to determine if any of the explanatory variables correlated with 

each other.   
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Figure 2: Scatter-plot matrices that show the correlations between explanatory variables. The asterisks 

indicate the significance of the correlation between two variables. Significance was found when P<0.001 

(R Core Team, 2020). The symbol “***” indicates P<0.001 (R Core Team, 2020). The numbers signify the 

correlation coefficient between the variables (a higher number indicates a strong correlation). 

Using the function “ggpairs” (Emerson et al, 2012) in R (R Core Team, 2020), a scatter-

plot matrix was developed (Figure 2).  The scatter-plot matrix shows correlations between the 

explanatory variables and the significance of each correlation using the correlation coefficient. 

The three significant correlations (ground and shrub, coverage and shrub, and coverage and 

ground) all display a moderate association (Asuero et al., 2007), that is, when the r value is 

between 0.40 and 0.59 (Asuero et al., 2007). All three correlations all have r values falling   

within that range. Ground and shrub has an r-value of 0.570, coverage and shrub has an r-value 

of –0.414 , and coverage and ground has an r-value of – 0.521. The functions “caret” (Kuhn, 
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2021) and “car” (Fox and Weisburg, 2019) were used to determine the collinearity of ground 

coverage, shrub coverage, midstory coverage, and canopy coverage. The values from the test 

were relatively small (ground coverage= 1.8214; canopy coverage= 1.4930; midstory coverage= 

1.0978; shrub coverage= 1.5917), which shows that the correlation found in the scatter-plot 

matrix is not substantial, so all habitat variables were used as explanatory variables in a linear 

model (Stine, 1995). 

I used the package “tree” (Ripley, 2021) in R  (R Core Team, 2020) to create two 

regression tree models (Figure 3 and 4, page 12). Regression trees use raw data to determine 

the most significant variables in relation to how they impact species abundance and diversity. I 

used the results from the regression trees (Figure 3 and 4, page 12) to inform the linear models 

I chose to test (Table 1) (Crawley, 2015). Table 1 lists the linear models used for bird diversity, 

while Table 2 lists the linear models used for bird abundance. 

Table 1: Table 1 lists the full names of the linear models used in the multiple regression for bird 

diversity. 

Short-hand Names of Linear Models Full Names of Linear Models 

G Ground Coverage 

C Canopy Coverage 

G,C Ground Coverage and Canopy Coverage 

G,S Ground Coverage and Shrub Coverage 

S,C Shrub Coverage and Canopy Coverage 

G,C,S Ground Coverage, Canopy Coverage, and Shrub Coverage 

G,S,M Ground Coverage, Shrub Coverage, and Midstory Coverage 

C*S Interaction between Canopy Coverage and Shrub Coverage 

C*M Interaction between Canopy Coverage and Midstory Coverage 

G*C Interaction between Ground Coverage and Canopy Coverage 
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Table 2: Table 2 lists the full names of the linear models used in the multiple regression for bird 

abundance. 

The multiple regression analysis required many models to determine which variables 

best explained the variation in species diversity and species abundance (Table 1).  I ranked the 

models by AIC value (Akaike Information Criterion). The AIC value indicates how well the model 

fits the data (Awad, 1995). A lower AIC value indicates a better fitting model. I used the package 

“AICcmodavg” (Mazerolle, 2020), which took all the models and ranked them in order of AIC 

value.  

After running the multiple regression, I created a series of scatter plots (Figure 5) to 

show the relationships between the explanatory variables and response variables. I used the 

package “ggplot2” (Wickham, 2016) in R (R Core Team, 2020) to create the plots.  

Short-hand Names of Linear Models Full Names of Linear Models 

G Ground Coverage 

C Canopy Coverage 

G,C Ground Coverage and Canopy Coverage 

G,M Ground Coverage and Midstory Coverage 

G,S Ground Coverage and Shrub Coverage 

C,M Canopy Coverage and Midstory Coverage 

G,M,C Ground Coverage, Midstory Coverage, and Canopy Coverage 

G,M,S Ground Coverage, Midstory Coverage, and Shrub Coverage 

G*C Interaction between Ground Coverage and Canopy Coverage 

C*S Interaction between Canopy Coverage and Shrub Coverage 
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Results 

Figure 3: The regression-tree plots show the ranking of variables in order of significance in how they 

affect species diversity. 

Ground < 47.5 

Shrub< 41.2 Shru < 60 
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5.778 3.400 



  13 

Figure 4: The regression-tree plots show the ranking of variables in order of significance in how they 

affect species abundance (bottom). 

The tree models (Figures 3 and 4) were created to help determine how to group the 

explanatory variables for the linear models. For both diversity and abundance, ground coverage 

was determined as the most important variable because it is at the top of the tree model. For 

diversity, shrub coverage was the second most important variable because it was right below 

ground coverage on both branches of the tree. For species abundance, coverage and midstory 

were the next most important variables. Using the data from the tree plots, I made linear 

models and ranked them in order of increasing AIC value (Tables 3 and 4).  

Ground < 36.6 

Covera < 77.5 Midsto < 50.4 

Midst < 36 Grou < 23.3 Grou < 52 

Covera e < 91.2 
Midsto < 19 Shrub 40.7 Midsto < 12.7 

7.600 
Shrub 40 .65 

6.667 6.667 4.200 
8.800 10.800 8.625 9.000 11.170 

5.444 7.800 10.440 
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Table 3: The models above were used to determine the best linear model for species diversity. These 

models were chosen based on Δ AIC value. We included the models with a Δ AIC less than 7 because 

these models together accounted for 100% of the variation (AICcWT). These were the best models 

based on AIC value. G= ground coverage; M= midstory coverage; C= canopy coverage; and S= shrub 

coverage. 

Table 4: The models above were used to determine the best linear model for species abundance. These 

models were chosen based on Δ AIC value. These were the best models based on AIC value. We included 

the models with a Δ AIC less than 7 because these models together accounted for 100% of the variation 

(AICcWT). G= ground coverage; M= midstory coverage; C= canopy coverage; and S= shrub coverage.  

Models R2 AIC ~AIC AICcWt 

G,C 0.1661 428.340 0.00 0.330 

G*C 0.1755 429.500 1.16 0.180 

G 0.1280 430.360 2.02 0.120 

G,C,S 0.1661 430.670 2.23 0.110 

C 0.1246 430.720 2.38 0.100 

S,C 0.1321 432.090 3.75 0.050 

G,S 0.1287 432.470 4.13 0.040 

C*S 0.1401 433.450 5.11 0.030 

G,S,M 0.1392 433.560 5.22 0.020 

C*M 0.1247 435.130 6.79 0.010 

Model R2 AIC ~AIC AICcWt 

G,M 0.181 494.600 0.000 0.220 

G,M,C 0.181 494.730 0.130 0.200 

G,C 0.181 494.750 0.150 0.200 

G 0.181 495.700 1.100 0.130 

G*C 0.184 496.420 1.820 0.090 

G,M,S 0.181 496.800 2.200 0.070 

G,S 0.152 497.870 3.270 0.040 

C 0.119 499.210 4.620 0.020 

C,M 0.124 500.920 6.330 0.010 

C*S 0.143 501.110 6.510 0.010 
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The linear models were ranked from lowest AIC value to highest AIC value (Tables 3 and 

4). The best linear model was chosen based on the lowest AIC value. The best models for species 

diversity (AIC=428.34) and for species abundance (AIC= 494.6) both have the lowest AIC values. 

The Δ AIC value indicates how similar the model is to the best fitting model. The models with a Δ 

AIC less than two are considered the best fitting models. There were multiple models that had a 

Δ AIC less than two for species diversity. One model includes ground cover and canopy cover and 

the other model includes the interaction between the two variables. The model that explains the 

most variation in species diversity includes ground coverage and canopy coverage, explaining 

33% of the variation in the data (AICcWT=0.33).  

For species abundance, there were several models that had a Δ AIC value less than two. 

Those models include ground and midstory; ground coverage, midstory coverage, and canopy 

coverage; ground coverage and canopy coverage; ground coverage; and the interaction between 

ground coverage and canopy coverage.  These could all be considered a “best fitting model” 

based on their Δ AIC values. The best fitted model for species abundance included ground 

coverage and mid-story coverage, explaining 22% of the variation in the data (AICcWT=0.22). The 

r2 values indicate how much variation each model explains. The best fitting model for species 

diversity has an r2 value of 0.1661. The best fitting model for species abundance has an r2 value 

of 0.1806.  
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Figure 5: Scatter plots showing the relationship between the explanatory variables and species 

abundance and diversity. On the top row, from left to right: canopy coverage and species abundance 

(P<0.001; r²= 0.128), canopy coverage and species diversity (P<0.001; r²= 0.1515), ground coverage and 

species abundance (P<0.001; r²= 0.0048) , ground coverage and species diversity (P<0.001; r²= 0.1192), 

shrub coverage and species abundance (P= 0.029; r²= 0.050), shrub coverage and species diversity 

(P=0.0246; r²=0.0536), midstory coverage and species abundance (P= 0.7805; r²< 0.001), midstory 

coverage and species diversity (P=0.3851; r²=0.008). 

The scatterplots show species abundance and diversity and their relationship to canopy 

coverage, ground coverage, midstory coverage, and shrub coverage (Figure  4), as these 

variables were found in the best fitted models. The scatterplots were created using the best 

linear models (ground coverage and canopy coverage for species diversity; ground coverage 

and midstory coverage for species abundance). There is a strong negative correlation between 

canopy coverage and species abundance (p<0.001), and there is a strong negative correlation 

between canopy coverage and species diversity (p<0.001). This means the number of species 

and the number of birds increased as the canopy coverage decreased. There is a strong positive 

correlation between ground coverage and species abundance (p<0.001), and there is a strong 

positive correlation between ground coverage and species diversity (p<0.001). There are more 

birds and a greater variety of species when there is more ground coverage. There is a positive 

correlation between shrub coverage and species abundance (p= 0.029), and there is a positive 

correlation between shrub coverage and species diversity (p=0.0246). There is not a significant 
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correlation between mid-story coverage and species abundance (p= 0.7805), or mid-story 

coverage and species diversity (p= 0.3851). 
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Discussion 

Understanding that canopy coverage, ground coverage, and shrub coverage are three 

significant factors in bird diversity and abundance allows conservationists to make plans that 

create optimal environments for the birds living in the area. It is also important for 

conservationists to understand how these variables interact with one another. Based on the 

multivariate analysis, the three most significant factors influencing bird abundance and 

diversity were canopy coverage, shrub coverage, and ground coverage. As canopy coverage 

decreases, the variety of species and the abundance of birds increase. As ground and shrub 

coverage increases, the variety of species and the number of birds increase. This makes sense 

because more canopy coverage allows for less sunlight to support the midstory, ground, and 

shrub coverage. Less canopy coverage allows for light to enter the forest, which promotes 

growth underneath the canopy level (Lewandowski et al., 2020). Previous studies have found 

that even one tree being removed from the canopy allows sunlight to reach the lower levels of 

the forest, creating more bird diversity and abundance (Lewandowski et al., 2020). Using this 

information, researchers can advocate for better environmental protection in forests to allow 

for optimal habitats for the birds nesting there. For example, to create optimal conditions for 

promoting bird diversity and abundance, people could remove already dead or diseased trees 

from the forest to create spaces in the canopy coverage (Lewandowski et al., 2020). By creating 

a small break in the canopy coverage, conservationists could promote the creation of bird 

habitats in that area (Lewandowski et al., 2020). 
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Interdisciplinary Connection 

The software used in the research in this study (R (R Core Team, 2020) can be used in 

research for other disciplines. The healthcare industry is constantly changing and improving as 

the result of research conducted in various hospitals, clinics, and laboratories. Utilizing the R (R 

Core Team, 2020) statistical environment would be beneficial for people in a variety of 

disciplines, including the field of nursing.  In particular, nurse managers and supervisors are 

often responsible for conducting performance improvement projects that help with patient 

outcomes. For example, if a particular floor in the hospital has a high number of patients that 

develop secondary infections while in the hospital, the nurse managers might be tasked with 

determining a way to reduce that number through various methods. The research projects 

nurses complete can be amplified and improved by conducting statistical analysis on the 

results.   

R (R Core Team, 2020) is the idea software for nurse managers to use if they only have a 

basic understanding of statistics and need to perform statistical analysis, or if they simply need 

software to make charts and graphs. R (R Core Team, 2020) and its companion software 

RStudio is open access, simple to use, and could be incorporated into the nursing school 

curriculum or offered as a continuing-education class for Registered Nurses.  

R (R Core Team, 2020) is already being used in nursing. For example, the R (R Core 

Team, 2020) package “shiny” is useful in helping nurses create graphs for their research 

(Heinsberg, 2022).  Most nursing managers do not need to use R (R Core Team, 2020) for any 

major statistical analysis for what is required of their performance improvement projects. 
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However, statistical analysis can strengthen the impact of their data. Nurses may also need to 

perform statistical analysis when creating budgets, analyzing staffing, and looking at patient 

outcomes.  

I conducted a performance improvement project through my Leadership and 

Management class at Encore, a location of Arkansas Heart Hospital. For the project, I worked 

with nurse leaders on ways to improve patient education on newly prescribed medications at 

the time of discharge from the emergency department. To begin the project, I examined 20 

patient charts with one of the nurse managers to see if there was a lack of documented patient 

education. We analyzed if the patients signed a document confirming that they received 

discharge education on their newly prescribed medications. For this project, I used R (R Core 

Team, 2020) to create a bar graph (Tutorialspoint) to show the difference between the number 

of patients who received discharge education and the patients who did not receive discharge 

education.   
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Figure 6: Bar graph showing the number of patient charts that contained a patient signature confirming 

discharge education was completed and the patient charts that did not include a signature confirming 

discharge education was completed. 

To create the bar graph, I used code from Tutorialspoint.com, a website that has code 

for many different functions in R (R Core Team, 2020), including bar graphs. R (R Core Team, 

2020) enables the user to select the color for the graphics. I selected the color “slategray3” 

(Frazier, n.d) to create the color above. Being able to change the color of the graphics makes R 

(R Core Team, 2020) more appealing to students of many disciplines. The bar graph (Figure 5) 

shows that most charts that were audited had patient signatures confirming they received 

discharge education. I also completed the Chi-squared Goodness of Fit test using R (R Core 

Team, 2020). The resulting p-value was 0.001745. This indicates that the amount of people who 

signed that they received discharge education is significantly greater than those who did not.  

Using R (R Core Team, 2020) for the Performance Improvement Project is just one example of 

how R (R Core Team, 2020) could benefit the medical field.  
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Appendix   

The following code was put into R Studio 2 (R Core Team, 2020) to provide statistical 

analysis and graphics. The code is provided so that others may rerun the data set or insert their 

own data sets. Any statements after a hashtag symbol (#) include notes on how to run the code 

and what the purpose of the code is.  

 

model1<-

lm(Complex_birds$Species_Diversity~Complex_birds$Date+Complex_birds$Coverage+C

omplex_birds$Ground+Complex_birds$Midstory+Complex_birds$Shrub) 

summary(model1) #Input data into Model 1 and then provides standard deviations and t-values 

which showed significance between Diversity and Coverage. The data shows GREATER 

significance between Diversity and Ground. 

par(mfrow=c(2,2)) 

plot(model1) #Plots data and shows the data is normal. 

X<-Complex_birds[,7:10] #includes columns: point, coverage, ground, midstory, shrub 

library(GGally) 

library(ggplot2) 

ggpairs(X) #This graphs Figure 2.  Figure 2 shows correlation between: ground and coverage; 

shrub and coverage; shrub and ground. All three are highly correlated with "***". 

library(corpcor) 

cor2pcor(cov(X)) # just shows graph in numerical format 

#removed coverage 

model2<-

lm(Complex_birds$Species_Diversity~Complex_birds$Date+Complex_birds$Ground+Co

mplex_birds$Midstory+Complex_birds$Shrub)  

summary(model2) 
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#removed ground 

model3<-

lm(Complex_birds$Species_Diversity~Complex_birds$Date+Complex_birds$Midstory+C

omplex_birds$Shrub) 

summary(model3) 

#removed shrub 

model4<-lm(Complex_birds$Species_Diversity~Complex_birds$Date+Complex_birds$Midstory) 

summary(model4) # Created different data models to compare variables.  

anova(model1,model2,model3,model4) 

plot(model1,model2,model3,model4) 

#AIC 

AIC(model1) 

BIC(model1) 

AIC(model2) 

AIC(model3) 

AIC(model4) #This package determined the AIC values of various models comparing variables 

and species diversity. This says Model 1 is the best because it has the lowest AIC value 

(432.0512) 

model5<-

lm(Complex_birds$Species_Diversity~Complex_birds$Shrub+Complex_birds$Ground+C

omplex_birds$Coverage) #Model with variables previously removed 

summary(model5) 

#The following models (A-D) were created comparing species abundance and the variables.  

modelA<-

lm(Complex_birds$Species_Abundance~Complex_birds$Date+Complex_birds$Coverage

+Complex_birds$Ground+Complex_birds$Midstory+Complex_birds$Shrub) 

summary(modelA) 

plot(modelA) 

modelB<-

lm(Complex_birds$Species_Abundance~Complex_birds$Date+Complex_birds$Coverage
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+Complex_birds$Midstory+Complex_birds$Shrub) # Ground was removed because it 

was the only variable that showed correlation with species abundance.  

summary(modelB) 

modelC<-

lm(Complex_birds$Species_Abundance~Complex_birds$Date+Complex_birds$Midstory

+Complex_birds$Shrub) # The variable canopy coverage was removed because it was 

the only variable that showed correlation with species abundance.  

summary(modelC) 

modelD<-

lm(Complex_birds$Species_Abundance~Complex_birds$Date+Complex_birds$Midstory

) # The variable shrub coverage was removed because it was the only variable that 

showed correlation with species abundance 

summary(modelD) 

# The AIC values of models A through D were calculated.  

AIC(modelA) 

BIC(modelA) 

AIC(modelB) 

AIC(modelC) 

AIC(modelD) 

#Best model is model 1 

#Variance inflation factors in the package "car". You need to open “car” to do this function.  

library(caret) 

library(car) 

car::vif(model1) 

model1<-

lm(Complex_birds$Species_Diversity~Complex_birds$Date+Complex_birds$Coverage+C

omplex_birds$Ground+Complex_birds$Midstory+Complex_birds$Shrub) 

par(mfrow=c(1,1)) 

library(tree) 

modeltree<-tree(Species_Diversity~.,data=Complex_birds) 
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plot(modeltree) 

text(modeltree) 

#Remove abundance. only use explanatory variable and response variable that we are using.  

diversity<-subset(Complex_birds,select=-c(Species_Abundance)) 

diversity 

#removing date and species abundance 

diversity2<-subset(Complex_birds2,select=-c(Date)) 

diversity2 

modeltree2<-tree(Species_Diversity~.,data=diversity2)  

plot(modeltree2) #This created the tree model comparing variables contributing bird species 

diversity. 

text(modeltree2) 

modeltree1<-tree(Species_Diversity~.,data=Complex_birds2) 

plot(modeltree1) 

text(modeltree1) 

diversity3<-subset(Complex_birds,select=-

c(Species_Diversity,Date,HC_index,Point,Shannon_all,Shannon_no_Cov,Habitats)) 

diversity3 

modeltree3<-tree(Species_Abundance~.,data=diversity3) 

plot(modeltree3) #This created the tree model comparing variables contributing bird species 

abundance. 

text(modeltree3) 

# The most important explanatory variable is Ground and the threshold value separating low 

and high values of ground is 36.6 (%). The right hand branch of the tree  

library(mgcv) 

modelGAM<-

gam(diversity2$Species_Diversity~s(diversity2$Coverage)+s(diversity2$Ground)+s(diver

sity2$Midstory)+s(diversity2$Shrub)) 

plot(modelGAM) 
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fullmodel<-

lm(diversity2$Species_Diversity~diversity2$Ground*diversity2$Shrub*diversity2$Cover

age*diversity2$Midstory+I(diversity2$Coverage^2)+I(diversity2$Ground^2)+I(diversity2

$Midstory^2)+I(diversity2$Shrub^2)) 

summary(fullmodel) 

mod2<-update(fullmodel,~.-

diversity2$Shrub:diversity2$Coverage:diversity2$Midstory:diversity2$Ground) 

summary(mod2) 

mod3<-update(mod2,~.-diversity2$Shrub:diversity2$Coverage:diversity2$Midstory) 

summary(mod3) 

mod4<-update(mod3,~.-diversity2$Ground:diversity2$Shrub) 

summary(mod4) 

mod5<-update(mod4,~.-I(diversity2$Shrub^2)) 

summary(mod5) 

mod6<- update(mod5,~.-diversity2$Ground:diversity2$Shrub:diversity2$Coverage) 

summary(mod6) 

mod7<-update(mod6,~.-diversity2$Shrub:diversity2$Coverage) 

summary(mod7) 

mod8<-update(mod7,~.-I(diversity2$Midstory^2)) 

summary(mod8) 

mod9<-update(mod8,~.-diversity2$Ground:diversity2$Coverage) 

summary(mod9) 

mod10<-update(mod9,~.-I(diversity2$Ground^2)) 

summary(mod10) 

mod11<-update(mod10,~.-diversity2$Ground) 

summary(mod11) 

mod12<-update(mod11,~.-diversity2$Shrub) 

summary(mod12) #everything is significant for species diversity 
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#AIC for Species Diversity 

AIC(fullmodel) 

AIC(mod2) 

AIC(mod3) 

AIC(mod4) 

AIC(mod5) 

AIC(mod6) 

AIC(mod7) 

AIC(mod8) 

AIC(mod9) 

AIC(mod10) 

AIC(mod11) 

AIC(mod12) 

#repeated for species abundance 

abundancemodel<-

lm(diversity3$Species_Abundance~diversity3$Ground*diversity3$Shrub*diversity3$Cov

erage*diversity3$Midstory+I(diversity3$Coverage^2)+I(diversity3$Ground^2)+I(diversit

y3$Midstory^2)+I(diversity3$Shrub^2)) 

summary(abundancemodel) 

modA<-update(abundancemodel,~.diversity3$Shrub:diversity3$Coverage:diversity3$Midstory) 

summary(modA) 

modB<-update(modA,~.-diversity3$Ground:diversity3$Shrub:diversity3$Coverage) 

summary(modB) 

modC<-update(modB,~.-diversity3$Ground:diversity3$Shrub) 

summary(modC) 

modD<-update(modC,~.-I(diversity3$Shrub^2)) 

summary(modD) 
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modE<-update(modD,~.-

diversity3$Ground:diversity3$Shrub:diversity3$Coverage:diversity3$Midstory) 

summary(modE) 

modF<-update(modE,~.-diversity3$Shrub:diversity3$Coverage) 

summary(modF) 

modG<-update(modF,~.-I(diversity3$Midstory^2))  

summary(modG)   

modH<-update(modG,~.-diversity3$Coverage) 

summary(modH) 

modI<-update(modH,~.-diversity3$Ground:diversity3$Midstory) 

summary(modI) 

modJ<-update(modI,~.-diversity3$Midstory:diversity3$Coverage) 

summary(modJ) 

modK<-update(modJ,~.-diversity3$Midstory) 

summary(modK) 

modL<-update(modK,~.-diversity3$Ground) 

summary(modL) 

modM<-update(modL,~.-diversity3$Shrub) 

summary(modM) 

modN<-update(modM,~.-I(diversity3$Ground^2)) 

summary(modN) 

modO<-update(modN,~.-diversity3$Ground:diversity3$Shrub:diversity3$Midstory) 

summary(modO) 

modP<-update(modO,~.-diversity3$Shrub:diversity3$Midstory) 

summary(modP) #CONTINUE COPYING OUTPUT FROM HERE 

#AIC for abundance 

AIC(modA) 
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AIC(modB) 

AIC(modC) 

AIC(modD) 

AIC(modE) 

 

 

 

AIC(modF) 

AIC(modG) 

AIC(modH) 

AIC(modI) 

AIC(modJ) 

AIC(modK) 

AIC(modL) 

AIC(modM) 

AIC(modN) 

AIC(modO) 

AIC(modP) 

#comparing AIC values 

library(AICcmodavg) 

models.diversity<-

list(fullmodel,mod2,mod3,mod4,mod5,mod6,mod7,mod8,mod9,mod10,mod11,mod12) 

models.diversity 

models.diversity.names<-

c('fullmodel','mod2','mod3','mod4','mod5','mod6','mod7','mod8','mod9','mod10','mod1

1','mod12') 

aictab(cand.set = models.diversity,modnames=models.diversity.names) 
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models.abundance<-

list(modA,modB,modC,modD,modE,modF,modG,modH,modI,modJ,modK,modL,modM,

modN,modO,modP) 

models.abundance 

models.abundance.names<-

c('modA','modB','modC','modD','modE','modF','modG','modH','modI','modJ','modK','mo

dL','modM','modN','modO','modP') 

aictab(cand.set = models.abundance,modnames=models.abundance.names) 

plot(modL) 

plot(Complex_birds2$Species_Diversity,Complex_birds2$Coverage) 

plot(I(Complex_birds2$Coverage^2),Complex_birds2$Species_Diversity) 

 

The following code was used to make the bar-graph and do the Chi-squared test in the paper's 

interdisciplinary connection portion.  

library(ggplot2) 

L <-c(3,17)  

barplot(L) 

M <- c("No","Yes") 

barplot(L,names.arg = M,xlab ="Signature at Discharge",ylab = 

"Patients",col="slategray3",main="Verified Medication Education Upon Discharge") 

chisq.test(PI) 
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