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INTRODUCTION 

My research project for this year is to study nuclear 

emulsion plates sent to the physics department by Dr. Davi.d 

Young of Mississippi State University and to learn as much as 

possible about the fields related to the project. These plates 

are exposed to oosmie rays at altitudes, for all practical 

purposes, above the earth's atmosphere. They are then collec­

ted and processed. They will be sent to us so that we can 

scan them next semester. 

The first semester's part of the project was-to scan a 

sample plate and to do· a literature research of related fields. 

Therefore, this paper is not a formal research paper on one 

topic, but instead a sample of scanning and outlines of the 

books I have read. 

EXPLANATION OF SCANNING DATA 

This is the scanning of a plate Dr. Young sent us from 

the top of the plate to the co-ordinate Y=10. It will be used 

to determine my bias, information which will be used in later 

scannings. In the drawingf$ 1 & generally the longest rays in­

dicate the incoming particles. The code for the direction is 

"g" if the incoming ray comes from the glass side of the plate 

and "a" if it comes from the air side. 

--~--~--··-·········--
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Rossi, Bruno. Cosmic Razs. New York: McGraw-Hill Book 
Company, 1964. 

1 VII. Electrons, photons, and showers 

A. Shower curve. When the particles go through a thick-

ness of lead, the coincidence per hour versus the 

thickness of lead is plotted like so: 

B. Theory of Hans A. Bathe and w. Heitler, both of 

England, in 1934. 

1. A Charged particle passes near an atomic nucleua, 

and its trajectory is bent by the strong electric 

field associated with the positive electric charge 

of the nucleus. 

a) Radiation losses are enormously greater for light 

particles than for heavy ones. Particles radiate 

as a result of aecelerated motion. The greater 

the mass, the smaller the acceleration. 

b) For a given mass per unit area, radiation losses 

are much greater in elements of high atomic 

number than in elements of low atomic number. 

The deflecting force experienced by a particle 

passing near a nucleus is proportional to the 

electric charge on the nucleus. 

e) Radiation losses increase with energy. Ioniza-

tion losses at first decrease with increasing 

energy, then they become more and more constant. 

1In most casee the Roman numeral indicates the chapter number. 
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Therefore, as the energy increases, radiation 

losses will eventually overtake ionization losses. 

For electrons, this is at about 10 MeV in lead 

and at about 100 MeV in air. 

2. Photons· produce pairs of positive and negative 

electrons. Bethe and Heitler studied this process. 

a) For a given photon energy, the probability of 

pair production in layers of different elements 

with the same mass per unit area increases 

rapidly with the atomic number of the element. 

This is for the same reason as in 1b. 

b)l The probability of pair production in a given 

thickness of matter first increases rapidly 

with increasing photon energy and then levels 

off at a nearly constant value. The probability 

of Compton collisions decreases steadily (not 

with a constant slope) with increasing··,energy. 

At low energies photons are absorbed mainly 

through the Compton effect, and at high energies 

mainly through pair production. The energy at 

which pair production overtakes the Compton effect 

is about MeV in lead and 20 MeV in air. 



o. Shower theol7--casoade process 

A photon produces a positive and a negative electron. 

Each emits a photon, and more as it slows down. There 

is a chain reaction. But individual energy slowly 

gives out, and the reaction dies. 

VIII. MU Meson--discovered in 1937 

A. Penetration of the mu meson is larger than that of 

the electron. 

B. The mu meson has the srume charge as that of an electron, 

has a mass about two hundred times that of an electron, 

-6 and has a mean life of 2x10 seconds. 

c. T.he density of droplets along the cloud-chamber track 

of particles gives the ionization of a particle. 

D. Local cosmic radiation: Penetrating particles are mu 

mesons. Absorbable particles are electrons. Nonionizing 

particles are photons. 

E. The mean life is 1.4 times the half life. The mean life 

is the average life span of a particle. 

F. The neutrino is a particle with no mass and no electric 

charge. 

IX. Pi mesons 

A. Negative mu mesons are captured by nuclei (Stars on 

emulsion plate). Positive mu mesons decay naturally. 

In light elements not all the negative mu mesons are 

captured. This is one mystery that lead to the discovery 

of the pi meson. 
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-v =neutrino 
r( - , fi-- + v -iJ =antineutrina 

-k ~ e--t-v+v 
e=electron 

c. When an-meson is captured by a nucleus, it does not 

have time to decay before it explodes because energy 

is given off when it stops. In nuclear emulsions, a 

star appears where a rr- meson is captured and the parts 

of the nucleus are scattered. 

D. The mass is 273 electron masses. The mean life is 

2.55 x 10-8second. 

E. Pi mesons interact more frequently with atomic nuclei 

than do mu mesons. 

F. Neutral pi mesons. 

1. Mass= 274 electrons 
-16 2. Mean life = 2 x 10 second. 

x. Nuclear interactions of cosmic rays 

y = photon < r ray) 

A. High-energy electrons, photons, and mu mesons form the 

bulk of the cosmic radiation near sea level, rur they 

do not interact appreciably with atomic nuclei. The 

strongly interacting particles are protons, neutrons, 

and pi mesons that do not·~aecay first into mu mesons. 

B. Two groups of new particles are heavy mesons and 

hyperons. Both may be neutral or electrically charged. 

Neither occur singly. 
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1 .. Heavy mesons 

a) These are lighter than protons, but heavier than 

pi mesons. 

b) They may be produced in nuclear collisions by a 

direct process of materialization of energy. 

2. Hyperons 

a) These are heavier than protons. 

b) A high-energy proton or neutron may turn into 

a hyperon when it strikes an atomic nucleus, 

giving rise at the same time to a heavy meson. 

c. A neutral lambda particle (1\)--a hyperon--decays into 

a proton and a negative pi meson: 

A~ p•+rr 

D. Positive sigma particles--hyperons--decay into neutrons 

and positive pi mesons: 

2:+ ~Yl.J +H'+-

E. Heavy meson--positive 
I( t __, rr+ ~ 11 + + rt ~ 

K + _...., do + rio + rr + 

K+ ~ r1'" + rt+ 

l<'t ~ ..-'( ... + v 

K -t __,. ...-<-<. +- + rr f> + -v 
K i- ___,. e..+ -t n'o -r- V 

F. Antiprotons and antineutrons are like positrons. 

XI. What cosmic rays are and what they do in the atmosphere, 

Primary cosmic rays are naked nuclei. Their energies 

are distributed over a broad spectrum. Their trajectories 

are bent by the earth's path (latitude effect). More come 
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from the west than from the east (east-west effect). 

On the average, protons collide after going about 70 g/cm2, 

or 1/14 the air mass above sea level. Alpha particl~s go 

25 g/cm2• Heavier nuclei go even smaller distances. 

XII. Giant showers of the atmosphere 

A. The minimum energy necessary to produce a shower 

observable at sea level is about 1o14ev. 

B. The only way to study the high-energy region of the 

cosmic-ray spectrum is to observe air showers. 

XIV. Cosmic rays and the sun 

A. The most spectacular solar event ever recorded by 

ground-based instruments took place on February 23, 

1956 (13 years ago--near solar maximum). A great 

solar flare appeared. In 15-20 minutes cosmic-ray 

counting machines went crazy.. The higher the altitude, 

the greater the detection. Some increased to between 

25 and 40 times normal. But detectors near the equator 

recorded increases of only a few per cent. This 

increase was due to a stream of high-energy particles 

ejected by the sun at the time of the solar flare. 

The radiation originating from the flare contained 

comparitively more low-energy particles than did 

ordinary radiation. This is shown by the difference in 

increase with respect to latitude. It takes high­

energy particles to penetrate the earth's magnetic 

field. 
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B. 1956-57 l'lfas the International Geophysical Year. During 

this time there was a sudden increase in atmospheric 

ionization over the polar caps an hour or so after the 

appearance of a large solar flare. Other tests were 

made, and with the same results. 

c. The particles produced in these events continue to 

rain upon the earth for a period of hours after the 

disappearance of the flare from which they arose. 

Apparently the particles cannot escape directly from 

the solar• system, but they are trapped temporarily 

within it. 

D. The particles observed immediately after the flare 

often appear to approach the earth from a fairly 

well-defined direction. Toward the end of the event 

the particles seem to come from all directions. The 

11early 11 particles are those coming directly from the 

sun (bent some by interplanetary magnetic fields), and 

the 11lateu particles are those that have bounced back 

and forth several times in space before reaching the : ~.: • 

earth. 

E. Solar activity also affects the flux of high-energy 

particles entering the solar system from outside. 

This is called Forbush decreases. About one day after 

a solar eruption the earth experiences a magnetic 

nstorm." There is a short increase of the order of 
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one part per thousand in the strength or the earth's 

magnetic field (sudden commencement) followed by a 

decrease of the order of several parts per thousand 

for a few hours (main phase). The magnetic field 

slowly recovers its original strength over a period 

of days. Some storms are accompanied by Forbush de­

creases. Cosmic-ray intensity begins to decrease at 

the same time as the magnetic field, reaching a mini­

mum a few per cent below normal. As the magnetic field 

returns to normal, so does the eosmic~ray intensity. 

This is a world-wide effect. Therefore, whatever 

produces the decreases must effect both high-energy 

and low-energy particles. Also, along with these changes 

often comes large-scale changes in the outer radiation 

belt. Radiation intensity drops sharply at first, 

particularly in the far region of the outer belt. 

Simultaneously, widespread aurorae appear. After a 

day or two the outer belt returns to normal. The num­

ber of particles overshoots the prestorm level and then 

decreases gradually. After a few weeks the outer belt 

returns again to normal. 

F. T.he something from the sun: 

1. Produces magnetic storms. 

2. Partially shields the earth from oncoming cosmic-ray 

flux. 

3. Causes auroral displays. 
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4. Changes the outer radiation belt. 

5. Carries with it the energy needed to rebuild that 

belt. 

G. Theory of these particles: Out of the solar corona 

comes a constant stream of diluted, highly-ionized 

gas (plasma), consisting mainly of hydrogen. Because 

of this there exists in interplanetary space a more or 

less steady 11windtt of plasma (solar wind). Near the 

earth the speed of the wind is several hundred km/sec, 

and the density is several particles/co. The nexplosionsn 

responsible for the solar flares occur at the base 

of the corona, in the region immediately above the 

photosphere, the visible disk of the sun. Much of the 

energy released appears as additional kinetic energy 

in the dense plasma at the base of the corona. As a 

result, a cloud of plasma is driven through the corona 

into interplanetary space at a speed of about 1,000 km/sec. 

Aa it pushes against the solar wind, which is moving at 

a slower speed away from the sun, the cloud produces 

a shock wave. When this wave hits the earthts magnetic 

field, it compresses the lines of force and causes the 

sudden commencement (increase in strength of field). 

It also pu·cs wiggles in the distant lines of force1 

where the field is weaker and more easily disturbed. 

This gives a possible escape to the trapped particles 

of the outer belt. Solar plasma is injected by the 

shock wave into the magnetosphere (the region where the 
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magnetic field predominates over the interplanetary 

field). This may cause the main phase of the magnetic 

storm. Also, the wave may increase the individual 

energies of the plasma particles already in the 

magnetosphere. Anyway, the plasma pressure increases, 

and the lines of force move farther apart, and the 

field's strength decreases. This injection, or heat­

ing, is probably closely related to the recovery of 

the outer Van Allen belt. 

H. As the altitude increases, the difference between 

cosmic rays at solar minimum and those at solar maxi-

mum increase. Therefore, whatever causes the increase 

affects mainly low-energy particles. 

XV. The origin of cosmic rays--an unsolved problem. 

. XIV. Appendix 

A. One eV is the amount of kinetic energy of an electron 

accelerated by a potential difference of one volt. 

B. Elementary particles 

1. Photon--the quantum of electromagnetic radiation. 

2. Pi meson--the quantum of the nuclear fields of force. 

3. K mesons--"heavy" r1 mesons. 

4. Z --xi particles, A--lambda, 2. --sigma. 

5. Leptons and baryons are conserved. (But they are not 

interehangable, as are mass and energy.) 

-- -- -- ·-· ---
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XVI. Particle Bombardment 

A. Massless particles 

B. 

1. Quantum theory--all rorms of energy can be viewed 

as consisting of discrete little packets (quanta). 

2. All particles behave in some way like waves; all 

waves behave in some way like particles. 

3. Photons--particles of light. The rest mass is zero. 

4. Gravitons and neutrinos have no rest mass and 

travel at the speed of light. No particle with a 

rest mass can travel at the speed of light. 

5. The photon has a spin + of -1; the neutrin~, ~; 

and the graviton, + 
-2. 

6. The graviton has never been detected. 

Cosmic ray sources 

1. The speed of the solar wind can be as high as 

450 miles/second. 

2. The Van Allen belts and the magnetosphere are the 

same thing. 

3. The ionosphere normally contains a high concentra-

tion of ions. Magnetic storms are in the ionosphere. 

4. Cosmic rays may be produced by solar flares from all 

the stars. The ones with higher energies are those 

that have been "batted around" more. Also, some 



stars produce rays with more energy than those 

produced by our sun. 

XVII. Energetic Photons 

A. Electromagnetic spectrum 

26 

1. The energy of visible light ranges from 1.5eV (red) 

to 3.0eV (violet). T.he greater the energy, the 

shorter the wave. Radio waves are 0-0.00001eV. 

Microwaves are 0.00001-0.001eV. Infrared rays are 

0.001-1.5eV. Ultraviolet rays are 3-100eV. X-rays 

are 100-100,000eV. Gamma rays are 100 1 000+eV. 

B. Antimatter 

Antigalaxies emit antimatter, therefore antigalaxies 

may be pinpointed by the high-energy antimatter they 

send out. 

XVIII. Radio Astronomy 

A. Solar flares cause jamming of radar equipment. The 

flare sends out a flood of microwaves. Some are emit­

ted by the corona, some by the surface of the sun. 

B. Some planets also send out microwaves from their 

surfaces. 

c. Microwaves are emitted from the center of the galaxy. 
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I. How Far, How Big, How Hot? 

A. The surface temperature of the sun is about 5800°K, 

or about 5500°C. 

B. Heat is produced inside the sun at the rate of 4.4 
-8 I x 10 calories second/gram material. The surface of 

the sun is small compared to its volume. The surface 

must be kept very hot to radiate all that heat. 

III. The Sun's Turbulent Surface 

A. The temperature of the sun increases rapidly as one 

goes deeper into the body. 

B. The density is 1.4. The gases are highly compressed. 

c. At the same density and pressure, atoms with lower 

ionization potentia~ become ionized at lower tempera­

tures, where they are subject to more moderate col­

lisions, than do atoms having a higher ionization 

potentials. 

D. Most of the sun is hydrogen (82% by volume). 18% is 

helium. The rest are traces of other elements. 

E. Sun Spots 

1. The smallest ones, called pores, are just a few 

hundred miles in diameter. Probably smaller ones 

invisible to telescopes exist. Larger ones go to 

tens of thousands of miles. Sometimes they are 
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grouped together. These groups may go more than 

100,000 miles. The largest group yet recorded was 

in April, 1947 {March 5-April 12--twioe around). 

The total area was 6 x 109square miles--more than 

1~ or the total apparent area of the solar disk. 

2. Most sun spots occur between latitudes 5° and 30° 

North and South, or in the "tropical'·' regions. In 

August, 1956, there was a group or spots at 50° 

from the equator. 

3. The sun does not rotate like a solid sphere. The 

rotation at the equator is faster than the rotation 

higher or lower. Ranges: 

Distance from equator 

00 

15° 
30° 

45° 
60° 

75° 

Days rotation period 

24.64 
25.41 
26.J..J.5 
28.54 
30.99 
33.07 

4. The temperature or the spots is a couple of thousand 

degrees lower than that of the rest or the surface. 

5. The darker central part is called the umbra. The 

brighter ring is called the penumbra. Out from 

this are the outlying surfaces. 

F. The sun's surface is in constant violent m.otion,::;$par"t-
i 

ing, etc. This is not just at the sun spots. This is 

known as granulation. Larger increases of local 
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surface brightness are known as faculae (torches), 

flocculi (flakes), and flares (especially bright ones). 

Flares appear around sun spots. 

G. The Solar Corona 

1. This contains highly ionized atoms common on Earth. 

Atoms lose electrons because or the heat. 

2. The temperature of the corona is about 1,000,000°K. 

The temperature of the solar photosphere is only 

about 6,000°K. The gases of the corona are heated 

by the "noise" produced by the turbulent motion of 

the solar photosphere. 

H. Solar Magnetism 

1. Zeeman effect--The Fraunhofer line~in the spectrum 

of light emitted by the sunspots: The Dutch physicist 

found out that each line is split into several com­

ponents located close to one another. The presence 

of the Zeeman effect in the line spectrum indicates 

that the light source is subject to the action of a 

magnetic field. This effect can be illustrated by 

a single electron turning. 

H '"?1':Jrue-.f', e- .,\?; e.IJ, ct'red:;o rt~ o-f ~oaen.-i 



There are very strong magnetic fields at the sun 

spots. The spots are giant electromagnets. The 
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current feeding into them is several thousand billion 

amps. 

2. Sun spots usually occur in pairs. Each spot in the 

polarity • 

.......,.....r..t~(VU,C)· ~ 

There is a giant cylindrical whirl of electrically 

charged matter. 

3. The polarity of sun spot pairs in the northern hemi­

sphere is always opposite to the polarity of pairs 

in the southern hemisphere. For example, if the 

order in the nouthern hemisphere is south-north, 

the order in the southern hemisphere is north-south. 

This means that the whirls are in two opposite 

directions. 

4. The polarity changes from one maxima to the next. 

For example, one time spectroscopic studies show 

the spots in the northern hemisphere to be in an 

arrangement or S-N. Eleven years later they are 

in a N-S arrangement. 

) 
0 
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5. Thes e whirls rise and breafe. to form flares . Elec-

trically charged particles follow the magnetic lines 

of force and form the whirls . 

I . Magnetohydrodynamics 

The surface of the sun can be compared to cyclones 

on earth. The magnetism and dynamics of the sun can 

be basi~~y explained with things develoryed on earth, 

such as the Tesla co i l . 

J . Solar activity and its influence on the Earth 

1 . Solar activity means the periodicity of phenomena 

taking place on the surface of the Sun . 

2 . The average period of sun spots is 11 . 2 years , 

although it has be as short as 7. 5 year•s or as 

lon~as 16 years . 

IV. The Hot Solar Interior 

A. The sun is made up of plasma , the fourth state of mat­

ter . All atomic electrons are completely stripped 

from their normal orbits around the nuclei . Plasma 

can be condensed more than can regular matter . Plasma 

fluid density would be about 1014gm/cm2• However , no 

plasma fluid is known to exist in the universe . 

B. The ideal gas law holds true for plasma . 
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I. Solar Emissions and Solar Storms 

A. Introduction--The Quiet Sun 

The sun exhibits a sharp disk called the photosphere. 

Above this is a heterogenous region not in thermodynamic 

equilibrium in which appear flares, prominences, spin­

cules, etc. This is the chromosphere. Above this is 

the corona. Heterogenous means different in structure, 

quality, etc. 

Bubbles of hot material in the photospheric convective 

zone form, rise, mix with surrounding material, and 

disappear. Cooler material sinks into the photosphere. 

The granulae appear to be visual evidence of this con-

vective phenomena. The upper radiative zone of the 

photosphere is turbulent. The curl-free part of the 

pressure wave field formed in the granulation zone passes 

through the nonconvective photospheric region and enters 

the chromosphere. In the chromosphere the micro-turbulent 

part of the energy is a field of sound waves propagating 

in all directions. Turbulent velocity increases with 

height. When the material velocities of turbulance 

become comparable to molecular velocities, dissipation 

sets in. Dissipation of this energy flux causes heating 

of the chromosphere and corona. 
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As the sound pressure waves rise, they degenerate into 

jet-like motionff,~iceh eonsti tutes the macro-turbulent 

part of the sound energy and form sharp shock fronts in 

the higher layers. Jet-like extensions of the photo-

sphere are called spincules. 

Mechanical energy flux heats the corona. A small part 

is lost as X-rays. A still smaller part is lost by 

evaporation of particles. The bulk of the coronal 

absorbed energy is conducted back toward the chromosphere. 

B. The Disturbed Photosphere and Ch~osppere--Sunspots 

and Prominences 

1. Sun spots 

These appear generally in an eleven-year cycle. 

One starts as a small round pore 1,500 to 3,000 km 

in diameter. A pore usually develops into numerous 

other spots. 

One consists of a dar!Qer inner area (the umbra) and 

an outer area (the penumbra). Matter flows out of the 

penumbra. The velocity of flow increases from center 

to edge to about 3 km/sec. However, velocities of 

6 km/sec have been observed. At altitudes of 2,000 km 

the flow direction reverses and is inward at u km/see. 

Spot groups are usually oval in shape with the long 

axis aleigned so that the preceding tor p) spot is 
.. 
closer to the equator. The higher the latitude of 



the group, the larger the angle or dip. For example, 

for spot groups at 30° to 34° latitude, the orienta­

tion is -19° from the east-west direction. 

Poles. A preceding spot is one pole in one hemisphere 

and the other pole in the other hemisphere. A pre­

ceding spot has more flux passing through the spot 

area than does a rollowing spot. The ratio is about 

three to one. 

The temperature or the umbra is 4300-4900°K, compared 

to the photosphere at 5,?85°K. There is a depression 

by about ;)OO km of the photosphere in the area of the 

spot. The magnetic field is believed to effectuate 

a cooling of the photosphere in the region of the 

spot and the depression or the region of the spot by 

suppressing convection in the hydrogen convection 

zone. This may or may not be true. 

A sun s:oot grows to full size in a period of 10-15 

days. The actual spot appears about two days af:Jer 

the appearance or the magnetic rield. It has been 

calculated that if conv~ction is halted, the time 

interval ror the temperature to drop from 6500°K to 

4500°K is only about ?,8 seconds. This indicates 

that the previous theory is false--or at least partly 

ralse. 

One theory for sunspot coolness is that they expand 

adiabaticll.y. 
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2. Prominences 

A full-grown prominence is a gaseous sheet about 

200,000 km long, 40,000 km high, and 6,000 km thick 

and has a blade-like shape. It is luminous against 

a dark sky, but dark on the disk. 

c. Solar Flares 

1. A flare is a sudden and short-lived brightening of 

one portion of the sun. T.hey always occur in centers 

of activity--that is, in regions of sun spots, facular 

fields, and prominences such as filaments and~urges. 

They often appear in the regions preceding and follow­

ing bimagnetic regions or in the sun-spot penumbra, 

but they practically never appear on top of a sun 

spot. '!'hey are about mid-way in a scale of violence. 

They have an average height of 20,000 km above the 

solar surface. Most light curves are asymmetricJ' 

the rising portion lasts about five to terr minutes, 

while the descending part lasts much longer. 

2. Flare Spectra--most are obtained in the light of 

H« at 1\6,.563. 

3. Impulsive Phenomena in the Solar Atmosphere--Activa­

tion Theory 

Associated with a flare, a high-speed surge (active 

dark flocculus) may appear. Velocities attained are 

hundreds of kilometers per second. Surges may recur 

again and again. The average time between the beginning 
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of a flare and the beginning of an accompanying surge 

is four minutes. Only in ten per cent of the eases 

does the surge appear before flare onset. The average 

surge starts as a bright or dark mottle 10,000 to 

20,000 km in diameter and in 90~ of the cases the 

velocity of ascent increases. The maximum. velocity 

usually reached is above 200 km/sec and is reached 

in a few minutes. Then the velocity decreases. 

Surges may reach altitudes of 500,000 km. They do 

not begin precisely over the flare, but average 

15,000 km from the flare. 

A halo phenomena sometimes accompanies the spot. 

Activation of filaments are observed as a change in 

darkness, size, and shape, or as internal motion. 

The complete dissolution of a filament may occur, 

but certain filaments often close to a flare may 

remain unchanged. Assuming that a disturbance starts 

at the time of the flare.and in the same vicinity, a 

velocity of progression of 20 to 200 km/see--the 

average is 60 km/sec--has been observed. 

Another phenomena is that activations and surface 

changes are pro5agated at velocities of 500 to 1500 

km/see. Some flares appear to exhibit an explosive 

phase during rise to maximum brightness. Such an 

explosive phase is often associated with a sudden 

expansion of the flare border. During the explosive 

I 
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phase of some flares, what appears to be ~iffuse 

faint clouds, showing as slightly brighter or slightly 

darker than the background surrounding the flare, are 

ejected from the flare at high speeds. At a great 

distance from the source, abrupt appearance and dis­

appearance of the filament occurs. 

4. X-rays and Ultraviolet rays. X-ray emission starts 

with the visible flare and ends with the decay of 

the flare. 

5. Other Phenomena. Cosmic rays, clouds of solar plasma, 

and a variety of radio emissions. 

6. Cosmic Rays 

The solar cosmic rays are generally believed to origi­

nate after the beginning of the flare. They are 

believed to be generated in the hot overlying coronal 

regions above a flare. There is a slowly decaying 

tail for the intensity curve, lasting several hours 

after the end of the flare. 

7. Cosmic Radio Background Decreases 

Shortly after the beginning of a flare in August, 

1958, a decrease was observed in the cosmic radio 

noise (observed by raometers--relative ionospheric 

opacity meters). Four hours later a further decrease 

occur»ed. This noise remained at a low level for 

many days after the flare. The ionizing effect of 

these particles are limited to the polar caps, but 



the transit times imply that the particles are very 

energetic and of low cosmic ray energy. A "corpus­

cular E11 layer is formed in the ionosphere at about 

100 km altitude., To maintain the observed ionization, 

about 1010 ionizations I cm2-sec are required. If 

every incoming proton generates 1 o4 pairs., an intensity 

at the pole of 1 o6 protons/cm2-sec is suffi.cient. 

8. Other stars have flares, also. 

9. Flare Theory 

The theory that flares represent electrical discharge 

must be unacceptable on the basis that the induced 

currents would effectively oppose the build-up of 

discharge currents. Also, the accelerating layer 

would be very thin (about five meters). The densities 

and temperatures implied by a thermonuclear reaction, 

which would need to be sustained for tens of minutes, 

together with the absence of neutron~ make the thermo­

nuclear reaction postulate very unattractive. 

Gold and Hoyle theory (1960): Consider a filament 

which consists of a bundle of lines of fol'oe which 

emerges from one point in the photosphere and reenters 

at another point. This is in the subphotosphere and 

of energy 105 ergs/cm3. The points of emergence and 

reentry are subject to twisting. Total energy is 

about 103° ergs. Internal solar magnetic fields 

become untwisted by the flare. 
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D. Solar Radio Emissions--The corona 

X-ray emission and slowly varying 10 to 15 em radio 

emission are associated with greater-than-no»mal coronal 

densities. 

1. Nonthermal Bursts--associated with flares 

a. Type III burst--lasts less than 10 seconds. Mainly 

polarized. Associated with the first phase of the 

flare. The speed through the corona is 105 km/seo. 

' The greater the flare area, the greater the cor-

relation. 

b. Type II--This is rarer than the Type III. There 

is an average delay of seven minutes between the 

flare and the burst. It lasts 102 to 103 seconds. 

It travels about 103 km/see. This accounts for 

the seven minutes. 

e. Type IV--lasts 104 seconds. About 90~ are preceded 

by the flare. 100~ polarized. 

d. U-type--lasts 3-1 0'1 seconds. About 80~ are asso­

ciated with flares. 'I'he speed is 1 o5 km/sec. 

e. Type I--occurs in noise storms. The individual 

pips last less than a second, but the noise st~m 

can last for an hour or for days. It is mainly 

polarized., 

r. Type IV--lasts 10'2 seconds. Often associated with 

flares. 
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2. A permanent, thermal radio radiation is emitted from 

the quiet sun. 

3. Thermal radiation is emitted from the centers of 

activity. 
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III. Basic solar data and the solar interior 

Studying the sun allows us to speculate about other stars. 

A. Data 

1. The rotational velocity is about 250 km/sec. 

2. Perpendicular motion is 20 km/sec. 

3. The mass (Mm) is 1.99 x 1033 grams. 

used as a basic unit. 

M is often 
~ 

4. The escape velocity for a neutral particle is 617 

km/sec. 

5. The distance from the earth to the sun is 1.493 x 

101 3 em. 

6. The mean angular diameter is 31ttl59"/ 

7. The radius (R•) is 6.96 x 1010 om. 

used as a unit for distance. 

R- is often 
G 

B. The sun is per~ectly spherical shaped. 

9. The energy given off is 1.95 cal/cm2min. This is 

equal to 3.9 x 1053 ergs/sec. 

10. The temperature is 5750°K. 

B. Theory of the Formation of the Sun 

There was a condensation of interstellar gas and 

hydrogen. All the elements were made in the stars 

with hydrogen as the starting material. 

c. The Solar Interior 

The solar material is opaque to all usable wavelengths 



42 
only a short distance below its relatively cool outer 

layers. Therefore, it is impossible to obtain any 

information directly about the interior of the sun. 

All the ideas are theory derived from surface informa-

tion. 

IV. Radiative Transfer and the Photosphere 

A. The photosphere comprises the portion of the solar 

atmosphere from which we receive the major portion of 

the sun's optical radiation. It is in radiative equi-

librium. 

B. The Solar Photosphere 

Widt, in 1939, suggested that the opacity of the sun 

was due to bound-free absorption of the negative 

hydrogen ion. 

Layer 

eo rona 

transition layer 

chromosphere 

Height 
(kin) 

20,000 -
1.400,000 

3,000 - 20,000 

0 - 3,000 

-270 - 0 

hydrogen convection -140,000 -
zone -250 

Main Energy Transfer 

thermal conduction 

mechanical energy 

radiation 

radiation 

convection and 
radiation 

Note: The height is given in terms of kilometers 
above the photosphere. 

c. Thermodynamic Considerations 

There are fluctuations of density and temperature in 
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the photosphere. The most important of these are 

solar granulation and related phenomena. 

v. The Hydrogen Convection Zone, Chromosphere, and Corona 

A. A minute part of the solar energy flux in transported 

through the photosphere in the form of mechanical 

energy. ~fuis fact greatly alters the physical sit­

uation in the outer solar atmosphere. The deposition 

of mechanical energy causes the temperature to decrease 

a few thousand degrees Kelvin, then increase rapidly 

to values of about,106°K. This energy is related 

to the solar granulation and is probably produced 

in the hydrogen convection zone. 

B. The Hydrogen Convection Zone and Noise Generation 

1. There is no satisfactory theory of the physical 

processes occurring in the convective zone beneath 

the photosphere. 

2. The hydrogen convection zone exists in its present 

location for two reasons: 

a) The adiabatic gradient decreases because of the 

hydrogen ionization. 

b) The structural gradient increases because of an 

initial increase in the opacity. The increase 

in opacity reduces the "mixing" of photons and 

allows the existence of the large temperature 

gradient responsible for the convection. 
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3. Granulation. This provides a fairly direct link 

between the observations and the theory of the 

convective zone. The mean diameter of the granules 

is about 700 km. The mean half life is about 

four minutes. The ~oot-mean-square temperature 

fluctuation is about 100°K. This does not con­

flict with the somewhat larger temperature fluc­

tuations considered in the nonhomogenous models 

because the fluctuations of a scale smaller than 

the resolution of the instrument (about 300 km) 

are not included. The granulation is independent 

of the heliocentric latitude and of the solar 

cycle. Therefore, it appears to be independent 

of solar activity, and it is a basic solar process. 

It is obscured near the limb by the increas~n 

the slant optical thickness of the photosphere. 

4. Noise generations and atmospheric heating. The 

turbulent subphotospheric motions appear to be the 

source of mechanical energy for the chromosphere 

and the corona. The hydrogen convection zone 

also has turbulent motions. Almost all the energy 

in generated in a layer about 100 km thick. This 

energy goes into acoustic waves that travel at 

the speed of sound. 

0. The Chromosphere 

1. Data 

a) It is 10,000 to 151 000 km thick. 
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b) It is poorly understood. 

c) It is very inhomogeneous. 

d) It is not in thermodynamic equilibri~ par~ 

ticularly above 5,000 km. 

e) Lines of CN, as well as those of hydrogen, 

helium, and the usual metals, are observed in 

the lower chromosphere. Fe XI is observed in 

much of the chromosphere. 

3. Three regions: 

a) First 500 km. This is mainly an extension 

of the photosphere. Height = 0 is defined as 

the visible edge of the sun. 

b) Lower chromosphere. The height is up to 

5,000 km. It is composed mostly of neutral 

hydrogen. The temperature is about 5000°K. 

c) Upper chromosphere. This is mostly ionized. 

The height is between 5000 km and the coronal 

value. 

4. During the quiet sun brilliant streamers, called 

spincules, emerge from the lower chromosphere. 

They appear to be aleigned with the solar magnetic 

field. They are carried upward by the slow mode 

waves mentioned in B. They could possibly car~y 

energy to the corona. 



D. The Corona 

1. This is the portion of the solar atmosphere 

above 1.03 R. 
® 

2. Three arbitrary divisions of the corona.: 

a) Inner corona (1.03 ~ r/R < 1.3) 
(i 

b) Medium corona (1.3 < r/R® < 2.5) 

c) Outer corona (r > 2. 5R ) or interplanetary 
() -

medium. 

3. The light of the corona has three components: 
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a) K corona--a continuum due to electron scattering. 

b) F-. corona--inner zodical light. This is solar 

radiation diffracted by interplanetary dust. 

The radiation is not physically connected with 

the corona. 

c) E corona--emission corona. This is the total 

light of the coronal emission lines. 

4. A streamer is a long extension of the corona. 

Subdivisions: 

a) Fans. These have dimensions of about 1 R 
® 

or greater. They determine the general form 

of the corona at any given time. 

b) Rays. 'These are narrow streamers besides the 

fan rays. Polar rays and rays above the faculae 

are in this category. 

5. The wavelengths of the lines in the emission 

corona do not coincide with the wavelengths of the 
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Fraunhofer lines. They come from highly ionized 

atoms. 

6. Radio emission from the corona is mainly thermal 

in origin. 

VI. The , Solar Magnetic Field and Solar Activity 

A. Introduction 

1. Magnetic fields are important in the transfer of 

energy from the hydrogen convection zone to the 

solar envelope. They influence the structure of 

the corona. Mostly, however, they cause solar 

activity--mainly sun spots. 

2. Flares cause radio communication fade-out and 

auroras. 

3. Page 122, T. G. Cowling, "Solar hydromagnetics is 

a fascinating subject and one which is very im­

perfectly understood; but it is also one in which 

the probability of being led astray by seductive 

theories is very high." 

B. Basic Hydromagnet:tcs 

1. The solar atmosphere is essentially electrically 

neutral. 

2. There are three elementary types of waves or 

oscillations which can exist in a plasma. 

a) Electromagnetic waves. These are physically 
• the same as ordinary waves in a vacuum.. 



b) Plasma oscillations. !hese result from an 

electrostatic restoring force. 

e) Hydromagnatio waves. 

o. The General Magnetic Field 

1. Theories of the origin·and maintenance: 
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a) It is essentially a fossil--a natural product 

of the sun 1 s process of formation. 

b~ 'The origin is due to the motion of electric 

charges due to solar rotation. This is prob­

ably too small to count. 

o) Thermal and pressure theories. Gradients of 

the electron pressure and the solar rotation 

can produce currents flowing in meridiana! 

planes which, in turn, produce an a~imuthal 

magnetic field. However, the solar field is 

thought to be poloidal. It is more difficult 

to produce a poloidal field, and pressure 

theories are probably inadequate. 

d) Dynamo theories. The motion of solar material 

across the lines of force of an exis.ting field 

produces currents, and these currents are· 

thought to maintain the field. It has not 

been possible to disprove the dynamo mechanism, 

but attempts to establish them have not. been 

seccessful. 



49 
e) Turbulent magnetic fields. The interaction 

of turbulent motions with the field can produce 

a turbulent magnetic field by a process roughly 

analogous to equiparti tion. 'The 'result of 

such a mechanism is to build up an irregular,' 

small-scale field which probably cannot be 

identified with the general solar field. 

2. The general field reverses polarity with the same 

period as the solar cycle. 

D. Sunspots 

1. mhese are dark markings on the sun composed of 

2. 

dark centers (umbr~ and border regions (p~numbrae). 

The umbra is rather struetu~ess, but granulation 

has been found in it •. The penumbra consists of· 

a group of small filaments radially oriented with 

respect to the center of the umbra. The ratio of 

the diameter of the penumbra to that of the umbra 

is about 2.4. This is lower for very large spots 

and greater for very small SDots. The diameter 

of a spot ranges from several thousand to several 

tens of thousand kilometers. Some spots have a 

bright ring around the penumbra 2-3% brighter 

than the photosphere. The upper surface of the 

spot is a shallow depressed area. A large spot 

group can attain lengths:of over 100,000 km. 

First a small spot, or polle, appears between the 
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granules. Other pores appear, and a young spot 

group develops. It may disappear after a few 

hours, or it may "grow" into a large group. 

3. Wolf's relative sunspot number: 

R=k( 1 Og+f) 

R=number of spots visible on the solar surface 

f=number of individual sunspots 

g=number of groups 

k=observati0nal bias 

4. Solar rotation takes 27 days. Therefore, the 

spots change every 27 days. At sunspot maximum 

there are ten or more groups on the disk. The 

cycle is not always the same, but usually there 

are 6.7 years from maximum to minimum and 4.6 

years from minimum to maximum. The average cycle 

is 11.2 years. 

5. Approximate mumber of sunspots in given years: 

A chart is given o~ge 140._ Generally, there 

were_,an exoeptionalJ1pumber of spots in 1727, 

1738, 1778, 1837, 1870, 1947, and 1957. There 

an exceptionally low number of spots in 1700, 

1710-1711 1 1723, 1733, 1744, from 1790 to 183h, 

and from 1873 to 1914. 

6. Almost all spots are around two zones at 45° 

latitude above and below the equator. The zones 

are 15 to 20° wide. Spots do not move. The sun 
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rotates. They seem to last about one month. 

Spots first appear at 1:30° latitude. They appear 

. up (down) to± 1-5° by solar maximum. The last 

spots of the cycle may be as low (high) asj8°. 

The migration of the sunspot zone is Aporer 1 s law. 

This is shown in a Maunder butterfly diagram on 

page -141. 

7. Hale in 1908 discovered that sun spots contain 

magnetic fields ranging in strength from several 

hundred/to several thousand gauss. The maximum 

field strength is fairly constant until the spot 

is about to disappear. Thus, it appears that the 

field seems to decay b"f the progressive sinking 

or rising of the outer lines of force into the 

photosphere, or the corona. This rules out decay 

by diffusion. Also ruling out diffusion is the 

fact that decay by diffusion would take 1000 years. 

A spot appears because a subsurface field is 

occasionally brought up to the surface and it 

disappears either by sinking back into the sub­

surface layers or by expanding outward into the 

corona. 

8. The temperature of the umbra is about 4600°K. 

9. The surface gravity of a sunspot is the same as 

that of the sun. 

10. There is a general, horizontal radial outflow 
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from sunspots with •peeds of about two km/sec. 

This is called the Evershed effect. The flow is 

not entirely radial because of the Coriolis force, 

This is not well understood. 

11. Classification of spot groups: 

a) Unipolar groups. o1. • These are single spots or 

groups of spots with the same magnetic polarity. 

b) Bipolar groups • .p. The preceding (p) and the 

following (f) spots, in the solar rotation, 

are of opposite polarity. 

c) Complex.groupl. Y· These have many spots of 

both polarities- but cannot legitimately be 

classified as ~ groups. 

12. About 90% of the spots are of class 1, 1 o% oe., 

and 1% 1• The unipolar groups -are usually the 

remaining p spot of an old bipolar group. Otten 

the distribution of faculae around a unipolar 

spot or group resembles the distribution of ~~oulae 

around a bipolar group. In this latter case, a 

magnetic region is found in the expected nosition 

of the "missing" spot. The magnetic field is 

present, but no spot develops. It can be taken 

from this that the ·spots are only a byproduct of 

a more important aspect of solar activity. This 

may be faculae. Faculae appear before the sun 

spots and outlast them by several solar rotations. 
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13. The magnetic flux in the p spots is about three 

times that in the f spots. Also, the p spots are 

somewhat larger and longer-lived than t spots. 

The bipolar magnetic region (BMR) is the basis 

for the development ot sunspot groups. The 

BMR 1 s follow the law of polarity better than 

do spots, and equal amounts of magnetic flux 

of opposite polarity are present in the p and 

f portions of the BMR. 

14. Sunspot theory by H. w. Babeock: The general 

type of field is a dipole field near the polar 

caps, but away from the caps it lies in a thin 

surface layer about 0.1R thick. This field 
® . 

is considered as frozen-in to the solar material. 

The field lines are carried along by solar 

rotation and drawn out by 4ifferential solar 

rotation. The result is an amplification of 

the field. This amplification depends on the 

latitude. A field of about 250 gauss (the 

critical value) will produce "magnetic buoyancy'' 

when amplified to 103 gauss by the twisting 

into flux ropes by distortions in the surfaces 

of constant angular velocity caused by convec­

tion. The ropes are unstable, and they form 

a loop. Loops which stick up through the 

surface are the mechanism for the production ot 

BMR's. Loops can also arise from magnetic 
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buoyancy in regions where the field is large. The 

density of a loop is lass than that of a magnatio 

region. Thereforet the region will have an upward 

buoyant force. Expanding lines of force from BMR's 

move outward toward the general dipole field. 

Severing and raconnection occur. With each process, 

a portion of the general field is neutralized. 

Finally a new general field of reversed sign is 

formed. 

15. Thera are some diff'ieultias in this theory, but 

it is the bast so far. Summary: 

:.1 
r.· 

a) At first the BMR is compact, but it soon expands 

into the corona. 

b) A submerged flux rope is developed because of 

the differential solar rotation. This results 

in higher field strengths in the p part of the 

BMR. 

c) Tha ' axpansion continues, the field strength 

decreases, and the signs of solar activity 

gradually disappear. 
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IE. Ii'aculae 

1. Terminology 

Faculae used to mean the bright regions seen in 

white light near the limb of the sun. Now these 

are called nhotospheric faculae. Bri~ht areas 

observed in K line or H« spectroheliograms are 

called chromospheric faculae or nlages faculaires 

or nlages. A floccuilius is a small, bright (but 

sometimes dark) area associated with chromosoh~ric 

faculae. Chromospheric :raculae B.re the same thing 

as bright focculi. rrhe physical entity respon­

sible for these various mani:Cestations is called 

a facula. It can be subdivided into photospheric 

and chromospheric. A small bright or dark area 

in a :racula is called a flocculus. 

2. Structure and relation to other phenomena 

a) Sunspots are always accompanied by faculae, 

but faculae can occur 1vi thout sunspots. 

Faculae appear before the sunspots and usually 

last for several solar rotations after the 

spots disapnear. rf.lhe latitude distributi on 

of faculae is a broader belt than is that of 

spots. 

b) Faculae are closely related to magnetic fields. 

Polar faculae exist. This may be because of 

the general solar field or the polar field 



suggested by the polar, coronal rays. 

c) Faculae can be observed only near the limb 

in white light. They cannot be distinguished 

from the photospheric background at the center 

of the disk. This means: 

1 ) They are brighter than their surroundings 

in their upper portions. 

2) They are cooler than 'their surroundings in 

their lower portions. 

3) They are not in radiative equilibrium. 

d) Chromospheric faculae are generally larger than 

photospheric faculae. 

e) Basicly, faculae seem to be composed of a net­

work of coarse mottles, which are composed of 

facular granules. These structures also exist 

in the quiet chromosphere. The main difference 

between the quiet chromosphere and the facular 

regions appears to be that the facular region 

has a higher density of the bright elements 

(granules or mottles) found in the normal 

chromosphere. At first the bright, fine mottles 

are in a compact structure. This gradually 

disperses. The j:'acular areas become patchy 

and eventually gradually merge into the normal 

chromospheric~network. 



3. Theory 

Faoulae occur because of an intensification or 

amplification of the process which normally heats 

the chromosphere. 

F. Flares 

1. Basic·data 

a) A flare is a short-lived sudden burst of light 

in the vicinity of a sun spot. They usually 

ocour near y o~ multipola~ groups, often when 

a change in the structure is occurring.. They 

are correlated with disturbances in the iono-

sphere and the magnetic field of the earth. 

This is probably through the emission of co~­

puscular radiation. Such activity can then 

produce auroras and the interruption of radio 

communication. Flases are associated with 

the emission of radio waves, ult~aviolent 

radiation, X-rays, and cosmic rays. This basic 

p~ocess has been observed in other stars. 

b) Sunspot number divided by 25 gives the approx-

imate number of flares per day. Flares are 

classified according to area and brightness, ~ 

In order of increasing importance, the clas­
·-lt 

sifications are 1-, 1, 2~ 3, 3. Flares of 

class 3 and esneoially 3+ are generally re~ 
+ sponsible for terrestrial effects. A 3 flare 
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lasts about three hours. A 1 flare lasts about 

twenty minutes. 

c) Development: There is a rapid rise to peak 

intensity, which it followed by a :t'rief. period 

of maxim~ brightness. Then there is a slow 

return to the pr&tlare brightness. 

d.) Flares ~e:ve the chramespherie strueture es­

sentially unchanged. A typical flare has an 

area o:t' about 1019 cm2• He3 is produced in' 

flares. Particles of high energy are envolved. 

Energy output it as high as 1027 ergs/see 
3 30 :t'or 1·0 see. This is equal to 10 ergs. 

2. Mass motions and related e:t':f'eots 

a) Fl.a:re surges occurring on the limb are oa.lled 
" ' 

surge prominences. Partiele speeds up to 

500 km/seo are reached~ Height.a up to 1 00.,0.00 

km are reached. The probability of flare 

surges increases with the importano~ of the 

flare. 

b) Both filaments and surge prominences are in­

fluenced by the same force field--probably 

magnetic._ A flare ean have an ef~eot on· near­

by filaments. 

c) Flare puffs. are a very rapid expansion o:t' a 
...J • 

flare nearly at onset. Flare surges oan occur 

at any time during the life of the flare. 
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Speeds found in puffs are as high as 103 krn/seo. 

3. Theory 

The flare is of magnetic origin. One theory is 

the discharge ina neutral plane. The other is 

twisted loopsof magnetic flux. 

G. Prominences 

1. General description. On the limb they are bright, 

arch-like structures resting on the chromosphere 

but extending into the corona. -~gainst the disk 

they are dark filaments. They exist in a ~arge 

variety of forms. 

2. Quiescent and related prominences 
c. About one third of the quies~nt prominences are 

associated with spot groups. They generally form 

on the polar side of the group, usually with the 

filament pointing toward the preceding spot. They 

appear about one solar rotation after the first 

spots l'ol"m. Tbe rest of the quiescent prominenoes 

fo~m in the general area of plot groups. They 

avoid direct association with the spots. However, 

all the quiescent prominences are about the same. 

3. Sunsuot prominences. 

a) There are two types: the arch or loop type 

and the condensation or know type. 

b) Downward motions predominate.. They are in 

constant motion. The spot p:rominences correspond 
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to the unstable filaments found in spot gt~oups .. 

In the loop type the trajectories can usually 

be explained as motion along the lines of force 

of a dipole situated just below the surface. 

The energy of the magnetic field in these prom­

inences greatly exceeds that in thermal or 

random motions. In the quiescent prominences 

the two energy densities are of the same 

order or magnitude. The mean projected length 

is about 60,000 km. 

c) Condens.ation or know prominences consist of 

a series of bright structures. The length is 

50,000 to 100,000 km above the surface. They 

are eonneeted.to the chromosphere. Material 

apparently condenses into the ~nota and then 

flows downward and into the chromosphere. 

These prominences are associated with flare 

activity and with coronal condensations. 

d) General mechanism is probably the same as 

for the quiescent, e~ept that they are not 

mechanically supported. They are maintained 

by a balance between the rate of the conden­

sation of material from the corona and the 

rate of flow along the field lines into the 

chromosphere. 



H. Center of Activity (CA) 

1 day--facular speck formed. l:i]longated .in east­

west direction. 

2 days--first spot formed at west end. Faoula 

very bright close to spot. 
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5 days--second spot formed in east region. Numerous 
3pat:s, 

small spots between p and r •. r1ares. Filaments 

appear. Brightness of facula keeps on increas­

ing. Ohromospheric e jeotj_orta. Spot prom-

inences. 

11 days--large penumbrae. Flare activity and facular 

size and brightness increasing. 
I 

27 days--nearly all spots except .p spot disappeared. 

Few flares. Size of facular region incraas-

ing. Filament stable. 

54 days--all spots gone~ Facular region increasing. 

in brightness. Out in half by filament, which 

has grown,· 

81 days--facular region dissolves. Filament growing. 

108 days--faoula completely dissolved, Filament 

reached m~imum length. Horizontal with 

equator. 

135 days--filament decreased. 

162-270 days--things going back to normal. 

The magnetic field is first observed a day or two 

before the first spots or fa.oulae. Maximum .flux 

is reached at 27 d~ys--one rotation. 
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VII. The Solar Spectrum 

A. Gamma Rays and X-rays 

The Quiet Sun does not produce gamma rays. Flares and 

other high-energy events do, however. The same is true 

for X-rays. These come from the corona and transition 

regions. 

B. Extreme and Far-Ultraviolent Radiation 

Between 100 and 3,000 A is this range. It comes from 

the lower chromosphere and the photosphere. It is 

produced during the Quiet Sun. Variation through the 

solar cycle is possible, however. 

0 • Lyman- o.. 

The Lyman-o~.. 11.ne is the dominant feature of the solar 

extreme ultraviolet spectrum. Radiation is not enhan­

ced in flares. It is about constant, but there is some 

radiation. The flux is 6 ergs/cm2sec. It comes from 

regions associated with solar flares. 

D. Optical radiation carries the bulk of the solar energy. 

E. Radio waves are 8mm to 15 m. These waves correspond 

to solar activity. 

F.· High-energy electrons are formed between the two loops. 

So are radio bursts. 

VIII. The Interplanetary Gas 

A. Introduction 

a) This is a constant flow of material from the sun. 

It is called solar corpuscular radiation or 

solar wind. The interplanetary medium is considered~ 
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as an extens i on of the solar corona. 

2 . Three components of interplanetary gas (plasma): 

a) Flare -associated events. 

b) Ap1)arently dis crete streams with a 27 -day period . 

Thes e are thought to be associated with unipolar 

regions on the sun . The streams may be the 

extension of large coronal streamers . 

c) General , steady, wind-like expansion. 

B. Theoretical Models 

1 . The gas is assumed to be spherically s ymmetri c and 

in a st!B'ady state . The net flow of energy into a 

volume (from the divergence of the conductive energy 

flux , for instance) · must go into the work involved 

in expanding gas or into the intArnal energy of the 

gas by r a ising the temperature. 

2 . Parker's theory . The corona is held at some con-

stant temperature out to a certain point . Beyond 0..~--,o 

that point the corona expands adiabatically . '11h:i. s ~-.f\ ~ vJ 
~ ·JtJ.A.t ~b-U .-;,/ ~u)~-o is probably on the right track . 
o..OJ- ---~-- .fit-0 ~-:;:.- 0 

3. Chamberlain 1 s theory . Energy is supplied only at CfJ"'; ~ ~ 
uJ ,o 7 

the base of the coronal. This gives a small er s peed d--.~\}£... 0~ 
oJ~ ~?_ 

for the particles than does Parker's theory. ·~-t)l,;t~l-

vJ~ 
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c. Empirical Results and Models 
<") 

1. Zc!iacal light is (n~)' caused mainly by scattering 

due to electrons. Some fluctuations in zodiacal 

light is due to electrons in a corpuscular stream. 

2. There is a cutoff of the geomagnetic field at about 

14R • 
0 

D. Space Probe Results 

The solar wind increases during solar activity. It is 

composed mainly of helium and protons. The interplan-

etary field varies between 2 and 10 • It is predom-

inantly radial, but a definite transverse component 

exists. 

E. Neutrals in the Interplanetary Gas 

F. 

The stage of ionization of elements in the interplan-

etary medium just outside the earth is. the same as 

that in the corona. Therefore, the interplanetary 

medium is a plasma. 

Cosmic Rays and the Interplanetary Magnetic Field 

1 • Primary particles of the energy range 1o9-1o10ev 

are produced in solar events associated with flares. 

The first particles of an event come straight from 

the direction of the sun. This means that they are 

not appreciably deviated by the interplanetary 

magnetic field. There are disordered magnetic 

fields outside the earth's orbit which can scatter 

the rays. 



2. The field is affected by solar rotation. This 

accounts for an east-west effect. Flares on the 

western).limb of the sun produce more observable 

cosmic-ray events on the earth than do flares on 
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the eastern limb. 11When the sunspot number is 

greatest, the intensity of cosmic rays is the least, 

and vice versa." (I question this.) This is in the 

ionization chambers. This is closely related to the 

charges int~e interplanetary magnetic field caused 

by solar activity. It is caused by the change in 

primary rays. 

3. The region of disordered fields is thicker and more 

disordered during sunspot maximum. A galactic par-

ticle will have a harder time getting through. 

4. The Forbush decrease is a decrease in secondary­

neutron or~-meson intensity due to a sudden 30-40% 
decrease in the intensity of the primary beam. 

These events occur about one day after some large 

solar flares. The earth is shielded from galactic 

cosmic rays. This could be the exp~nation for the 

statement in 2. The decrease is not in all cosmic 

rays, but only in galactic cosmic rays. 

IX. Comets. The study of their tails lead to the concept of 

the solar wind. 

x. Meteors send out radio signals. 

71 
I l 



XI. Meteorites 

A. These provide a good method for learning about the 

rest of the universe. 
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B. The bombardment 'of meteorites by cosmic rays produce 

radioactive materials. 

XIII. Interplanetary Dust 

Zodiacal light is observed as a faint band of light orfen­

ted along the eiiptic and increasing in intensity toward 

the sun. It is observed only on a very dark night. It 

gives some insight into interplanetary medium and dust~ . 

It is the scattering of sunlight. The particles are of 

the order of 1 0""' • 

XVIII. Atmospheres of' the Terr0strial Planets 

A. Whistlers are radio waves produced by lightning. 

B. The Van Allen belts are two zones of radiation sur­

rounding the earth. They are made up of charged par­

ticles--electrons and protons--trapped in the earth's 

magnetic field. Theories of the origin of' Van Allen 

particles: 

1. They ·a'l'e- e~·&eted directly from the solar wind or 

plasma clouds. 

2. They are accelerated locally in the geomagnetic 

field·. 

3. They arise from p decay of neutrons. This would 

come from collisions of cosmic rays with atmospheric 

nuclei. 
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C. Lar•q;e magnetic storms are associated 1'ri th ~Jolar flares. 

D. It is a mystery exactly what caus As auroras. ltrcoul9-

be causnd by narticles from the Van AllBn helt. Or k& 
could be caused by plasma instability. 

E. Air <>: low is light in tb 2 night sky. It probably comes 

from excitation by ehemical reactions and recombination. 



Bonestell, Chesley and Willy Ley. Beyond the Solar S~stem. 
New York: The Viking Press, 1964. 

I. Voyage to Alpha Centauri 
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A. The path or the earth is like that or a spring. This is 

because of the motion of the sun. 

B. The planets farther away from the sun than Mars, except 

Pluto, seem to consist mainly or hydrogen gas. These are 

called the outer planets or the gas giants. Mercury, 

Venus, Earth, and Mars are called the inner planets. 

They are smaller. Between Mars and Jupiter are 35,000 

planetoids or asteroids. The largest, Ceres, has a diameter 

or 480 miles. 

c. In one~sixth of its orbit, Pluto is closer to the sun 

than is Neptune. It was probably once a moon or Neptune. 

D. The planets and the sun are probably the same age. 

E. Nebula is Latin for "fogn. It is a huge cloud of gas, 
I 

mostly hydro~en, and cosmic dust. 'rhis could have con-

densed to form the stars and planets. 

F. Kepler's Third Law: 11 The relationship of the 'C'quares 

of the orbital periods of two planets is the same as the 

relationship of' the cubes of their mean distances from 

the sun.n page 11. 

G. The Crab Nebula is the remains or a supernova explosion 

observed and recorded in 1054 by Chinese astronomers. 

The Horsehead Nebula is in the constellation Orion. So 
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is the Great Nebula , which ha.s some very hot stars within 

it . 

II . Names and Shapes in the Sky 

A. The re d shift is produced by a r eceding star. Every 

line is displaced a little bit toward the red end of the 

spectrum. 

B. The blue shift, a shift toward the blue-viole t , is produce d 

by an approaching star . 
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Blanco, v. M. and s. w. McCuskey. Basic Physics ofthe Solar 
System. Addison-Wesley Series in the Engineering Sciences. 
Reading, Mass.: Addison-Wesley Publishing Co., Ino., 1961. 
Chapter 6 

I. The Sun 

A. Structure of the Outer Layers 

The atmosphere of the sun consists almost entirely of 

hydrogen. About 10,000 as many hydrogen atoms as any 

other atoms exist there. Heavier atoms are ionized by 

heat. Heat does not ionize hydrogen atoms, but electrons 

may attach to them. The negative hydrogen atoms cause 

opacity. 

B. Phenomena in the Outer Layers 
I 

1. The inner atmosphere,is the photosphere; the outer ------
atmosphere is the chromosphere and the corona. 

2. The chromosphere is the region responsible for the 

emission spectrum that is observed during a solar 

eclipse after the light from the photosphere has been 

blocked out by the moon. The lower part of the chro­

mosphere is sometimes called the reversing layer. 

The radiation from the deeper layers undergoes most 

of atomic and molecular absorption seen in the spectrum 

of the solar disk. 

3. The shape of the corona varies much during the solar 

.cycle; circular during minimum and elongated along 

the sun's equator during maximum. 
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4. Phenomena in the Quiet Sun 

a) Granulation, This is a mottled grainlike structure 

in the photosphere. They are bright patches of 

irregular shape. The average diameter is 700 km, 

The average lifetime is a few minutes. They are 

produced by turbulence in the photosphere • ..., 

b) Sp~cules. These are spikelike bright projections 

seen on the limb of the sun. The lifetime is a 

few minutes. 

c) Absorption lines. Absorption line intensity is 

measured as a function of the wavelength across a 

line, 

5. Phenomena in the Active Sun 

a) Sunspots. The diameter of the umbra is up to 

75,000 km. The penumbra is about twice as large. 

The Wilson ef.fect is that spots observed close to 

the limb of. the sun show as asymmetry between the 

umbra and the penumbra. T:his indicates that the 

spot is a depression in which the inward-sloping 

sides form the penumbra. One cannot predict from 

one cycle to the next the number of sun spots. 

"There is evidence that an 80-year cycle is super-

posed on the 11--year one. The intensity of light 

from the umbra is about one fourth that from the 

photosphere. Magnetic: .fields::.G much stronger than 

the general field are present in spots. Intensity 
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varies with the size or the spot. It is about 1 00 -

4000 gauss. The linos of force are vertical in 

the center and nearly hori zontal a t the elge. 

~fue field-intensity distribution is regular, even 

though the spot is i rregular in shape. ~rhe Evershed 

effect is that there exists an outward .flow of mass 

from the umbra. 

b) Faculae. These are areas surrounding the sunspots 

that are lighter than the rest of the photos~)bere. 

c) li'lares. 'These occur unexpectedly. 1"hey last about 

two hours. '.rhe occursnce is correlated Hi th 

intensification of cosmic rays. 

d) Filaments. 'lbese are ribonl:Lke dark markings found 

near groups. Viewed against the solar limb, they 

are called prominences. 

B. Solar-terrestrial relationships 

1. Magnetic storms are sudden violent disturbances. They 

cover the entire earth. ~rhey begin vTi t h in one or hvo 

minutes. 

0 2. Auroras appear in auroral zones 23 frmn the geomagnetic 

pole. They are caused by the bombardment of the 

earth's atmospherP by electri cally charged particles. 

rrb.e magnetic field of the earth de.fl c-~ cts these par-

ticles and gtiides them to the auroral zones . Some 

problems are not explained, but the basic principle 

is 1....rell tmdr"lrstood. 



3. Magnetic storms tend to occur about one day after 

an intense flare in the inner seven tenths of the 

sun's disk. There are frequent exceutions. 
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4. A crochet is a magnetic field disturbance consisting 

of small displacements. They are sudden and about 

thirty minutes long. They are confined to the sunlit 

side of the earth. They occur synchronously with 

+ class 3 and 3 solar flares. They are caused by 

electromagnetic radiation from flares. 

5. Low-energy cosmic radiation intensity increases after 

an intense flare. They leave the sun aT speeds close 

to that of light. 

c. Interplanetary Dust and Gas 

1. 1ihistlers are sounds of decreasing pitch that can be 

heard by a radio receiver tuned to low frequences. 

2. The material in the corona is plasma, or ionized gas. 

It therefore carries with it the lines of force of the 

general magnetic field of the sun. 
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Leprime-Ringuet, Louis. Cosmic Rays. New York: Printice-Hall, 

1950. 

I. Fundamental Concepts of Corpuscular Physics 

A. Cosmic rays have high frequency, low intensity, and high 

velocity. 

B. A very high-velocity electron produces in air, at normal 

temperature and pressure, fifty ion pairs of primary 

ionization per centimeter. The total ionization is 

about 80. The ionization of a particle is proportional 

to its velocity. An atomic nucleus in rapid motion 

liberates many more ions than an eledtron does. 

c. The photoelectric effect is the emission of electrons 

by matter. It depends only on the fP.equency of the 

exciting radiation, not on the intensity. Ways of measur­

ing the energy of the electrons: 

~~J Through the action of an electrostatic field of suit-

able direction, which stops the electrons. 

2. Through observation of electron trajectories in a 

cloud chamber. 

3. By measuring the radii of curvature of the electrons' 

paths in a magnetic field, a photoelectric plate being 

the donor. Electrons thus emitted are called photo-

electrons. 

D. Compton effect. A photon interacts with an electron. 

The photon is scattered with a loss of energy. An electron 



is set in motion. 

II. Restricted Relativity--Mass as a Function of Velocity 

The 

(YI = 
. ~1-\I'JJ 

~ mass of a cosmic 

m
0
= rest mass 

ray can be figured in this way. 
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III. Methods of Corpuscular Physics Adapted to Cosmic Radiation 

Photographic-emulsion method. A photographic plate covered 

with a thick emulsion of silver bromide is sent up, for 

all practical purposes, above the earth's atmosphere. When 

a particle comes in contact with the plate, it alters the 

grains of AgBr that it touches. When the plate has been 

processed one can see a discontinuous trail of these grains. 

These trails show the paths of the particles. From these 

paths the size,0charge, and speed of the particle can be 

determined. 



76 

Weast, Robert c. Handbook of Chemistry and Physics. Fort~­

seventh Edition. Section F. Cleveland, Ohio: The Chemical 
Rubber Co., 1966. 

Cosmic rays "Highly penetrating radiations which strike the 

earth, assumed to originate in interstellar space. They 

are classed as: primary, coming from the assumed source, 

and secondary, those induced in upper atmospheric nuclei 

by collision with primary cosmic rays." 

Photon "A photon, or ganuna ray, is a quantum of electro­

magnetic radiation which has zero rest mass and an energy 

of h (Pl~'s constant) times the frequency of the radiation. 

Photons are generated in collisions between nuclei or electrons 

and in any other process in which an electrically charged 

particle changes its momentum. Conversely photons can be 

absorbed (ie. annihilated) by any charged particle. 

Planck's constant "Relates the energy of a quantum of rad­

iation to the frequency of the oscullator w.hich emitted it. 

It has the dimentions of act~on (energy x time). Expressed 

by E = hv where E is the energy of the quantum and vis its 

frequency. Its numerical value is (6.62517 = 0.00023) x 10-27 

erg ·sec. 11 
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Page 1397-BJ2 

Solar Activity and the 11-year Modulation of Cosmic Rays. V. K. 
Balasubrahmanyan. 

The 18th solar cycle (1944-1954) has two prominent and widely 

separated cosmic-ray minima corresponding in phase with the 

two maxima. For the 19th solar cycle the existence of two 

minima is less prominent than for the 18th solar cycle. The 

maximum at higher solar latitudes is more effective in reducing 

cosmic-ray intensity than is the maximum at lower latitudes. 

Page 1399-BJ12 
Satellite Observations of Short-Lived Low-Energy Particle 

Increases Associated with Magnetic Storm Sudden Commencements. 
R. A. R. Palmeira1 F. R. Allum, K. G. M. Cracken, and u. R. 
Rao. 

The Center's cosmic-ray anistoropy detector on board the IMP-F 

satellite has detected six cases of short-lived, low-energy 

particle increases in close time association with the occurenoe 

of magnetic storm sudden commencements. Examination of all 

sudden commencements reported by more than five stations from 

May, 1967, to April, 1968, has revealed: 

a) Almost in every case in which there was a solar flare 

increase preceding the sudden commencement, and the cosmic-



ray intensity was still high at the time of the sudden 

commencements, the short-lived cosmic-ray increase was 

observed. 

b) In every case in which the cosmic-ray intensity was 

back to normal at the time of the sudden commencement, 

the short-lived increase was not observed. 
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o) All observed increases ovvurred within a few minutes 

from the sudden commencement, lasted less than an hour, 

and were restricted to less than 10-MeV particles. 

Page 1411-CG10 

Observations of Van Allen Belt Protons in Nuclear Emulsions 
1961-1968. Robert c. Filz and Ernest Holeman. 

The time behavior of 55-MeV trapped protons was determined 

from measurements in nuclear emulsions exposed on low altitude 

polar orbiting satellites from 1961 to 1968. Except for the 

increases!. caused by nstarfishn is 1962, no large, short-time 

scale fluctuations were observed prior to 1966. The decay 

following "Starfishn was initially consistent with ionization 

loss, but 1964 and 1965 data indicate consistency with a de-

crease in atmospheric density, as expected at the mimimum 

phase of the solar cycle. The 1966 flux levels tend to be 

lower than the 1964-1965 flux levela,.as expected as atmospheric 

densities increase again. The 1968 flux levels are even lower, 

and the data are consistent with pre-Starfish values. 
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Page 1433~DG2 

Pulsars and Cosmic Radiation. M. v. K. Apparas. 

The recently discovered pulsating radio sources give out radio 

energy at a rate of 1028 to 1029 ergs/sec. It is possible 

that they give out uarticles with a total energy content several. 

orders of magnitude higher. Taking into account their number 

density, it is suggested that pulsars could significantly 

contribute to the cosmic-ray intensity of the Galaxy. 
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