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ABSTRACT 

The applications of carbon nanomaterials (CNM), including graphene and its 

derivatives such as carbon nanotubes (CNTs) in nanomedicine is well established. 

These nanomaterials have been widely used as theranostic delivery systems with the 

potential to deliver bioactive agents and simultaneously detect selectively diseased 

tissues.  A rather underexplored CNM for biomedical imaging and theranostics delivery 

are carbon nano-onions (CNOs). CNOs are carbon-based nanomaterials that can 

potentially be used in cancer therapy when they are functionalized.  Recent studies on 

cellular fate of different CNMs, including CNOs, have demonstrated that the surface 

composition is critical for the in vivo application of these CNM. Current research 

discusses the preparation and characterization a novel CNO-Pt nanomaterial and the 

cell viability of U87 glioblastoma cells in the presence of this functionalized CNO.  In 

order to form the desired CNO-Pt compound, the CNOs were first oxidized, followed by 

attachment of the cis-diammine platinum(II) dichloride. The novel CNO-Pt nanomaterial 

was characterized by IR and UV-Vis spectroscopies. Cytotoxicity of the material was 

tested on U87 glioblastoma cells. Following an Alamar Blue assay, the CNO-Pt material 

showed approximately 25% cell death at all concentrations after only 24 hours. 

 

THERANOSTICS AND NANOMEDICINE WITH CARBON NANOMATERIALS 

Theranostics and Nanomedicine 

 The field of medicine is constantly changing and evolving as new discoveries are 

made and technology becomes more advanced. Theranostics is an emerging field of 

medicine which combines therapeutics and diagnostics in an effort to both diagnose and 
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treat simultaneously (1). The use of nanomedicine is very important in the theranostic 

field as well. Nanomedicine can be defined as the medical application of 

nanotechnology. Nanotechnology can help medications to be delivered more directly to 

the target area and have less of an effect on the body as a whole, which is especially 

important in cancer therapy. Current chemotherapy has a major effect on the whole 

body, killing healthy cells as well as cancerous cells. Nanomedicine can help direct the 

drug directly to the tumor and decrease exposure throughout the body, eliminating 

some of the harsh side effects that are present with current treatments (2). This type of 

treatment allows for movement towards personalized medicine, which is the process of 

diagnosing, monitoring, and treating patients in a way that will best fit their exact 

personal needs. This would be much more effective for decreasing the tumor size, as 

well as give the patient a much better quality of life. 

Utilizing nanomedicine can also reduce the frequency of taking medications. The 

body can typically remove medicines rapidly, but nanoparticles can be retained and 

continue to release a drug over a more extended period of time (3). Many nanoparticles 

have major advantages that make them great theranostic delivery agents. Several 

carbon nanomaterials have begun to show promise in the field of theranostics and they 

are the subjects of much ongoing research.  

Carbon Nanomaterials  

Carbon nanomaterials (CNMs) have recently become a very popular subject of 

chemistry research. They have many potential applications in bioimaging and 

theranostic delivery, but their poor solubility in some common solvents hinders some of 

their potential for use. Some CNMs can be functionalized to increase their solubility, 
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therefore increasing their potential for biological application. Many different types of 

carbon nanomaterials can be explored for this purpose.  

 Carbon nanotubes (CNTs) (Figure 1) are a type of CNM that resemble a hollow 

cylinder. CNTs can be formed by rolling up sheets of graphenes, or single layers of 

carbon atoms, into a tube-like shape. Nanotubes are now known to be one of the most 

stable carbon aggregates. CNTs can be single-walled (SWNT) or multi-walled (MWNT) 

depending on the number of graphene shells. SWNTs are longer tubes that are formed 

from the wrapping of a single sheet of graphene into a cylindrical shape. The sidewalls 

of the cylinders can be rolled in different ways to give specific nanotubes unique 

characteristics. MWNTs are made up of concentric SWNTs, giving them distinct 

properties compared to SWNTs.  

  

 

 

 

 

 

 

 

SWNTs have shown to be better for drug delivery than MWNTs because of their 

one-dimensional structure and very large surface area. Also, research has shown that 

anticancer drugs circulate much longer in the blood when attached to a SWNT than it 

does on its own. This allows for continuous uptake of the drug by a tumor for a 

Figure 1. Structure of a carbon nanotube (4). 
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prolonged period of time, which is important in helping treat cancer more effectively. 

MWNTs tend to be more useful for thermal cancer treatment such as radiation. After 

being exposed to wavelengths of near infrared light, MWNTs release much vibrational 

energy into the tissue. This release of energy causes heating in the local area which 

can destroy cancer cells (5). Therefore, both types of nanotubes have much therapeutic 

potential.  

Carbon nanotubes were discovered to have impressive chemical, electrical, 

thermal and mechanical properties that other carbon materials lack. They are also low 

in cytotoxicity, making them suitable for biological use. The chemical properties and 

great surface area of CNTs allow for modification of the surface of their outer shells, 

including the attachment of many functional groups. The surface can be functionalized 

to make them more water soluble, as well as to attach drug molecules. The structure 

and properties of the nanotubes could allow an attached drug to be released to a cell 

and enter via endocytosis or even passive diffusion (4). This makes CNTs seem very 

promising as delivery vehicles and gives them much potential for use in cancer therapy.  

Drugs are not the only molecules that can be added to the surface of CNTs. 

Fluorescent materials can also be attached to nanotubes, allowing them to be used for 

imaging purposes as well (5). The therapeutic application along with their imaging 

abilities and low cytotoxicity make carbon nanotubes very desirable in the growing field 

of theranostics.  

 Carbon nanohorns (CNHs), sometimes called carbon nanocones (Figure 2), are 

a conically shaped type of CNM. They are very similar to nanotubes, but with closed 

ends. Nanohorns, like nanotubes, can be single-layered or multi-layered with each 
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having different properties. CNHs are very chemically stable, have high purity and low 

cytotoxicity along with great catalytic properties and good conductivity. These properties 

give CNHs a wide range of uses, including many biomedical applications. They have 

much potential as drug delivery vehicles because they are very porous, allowing small 

drug molecules like the anticancer drug cisplatin to be loaded into the interior spaces 

and slowly released. The surface can also be modified so that a drug can be attached, 

creating much potential for carbon nanohorns to act as double reservoirs. They can 

combine methods for treating both inflammation and tumors. Research has shown that 

nanohorns can release a bioactive drug over a longer period of time, making it very 

useful for treatment. CNHs tend to aggregate inside tumors, which would allow the drug 

to empty into the tumor directly over time (8). The surface of the nanohorns can be 

modified to allow the structure to become more water soluble so it can be dissolved in 

the blood and removed from the human body after use. Fluorescent molecules can also 

be attached to the nanohorns, allowing them to be used for imaging as well (6). This 

combination of properties makes carbon nanohorns very suitable candidates for use in 

the theranostic field.  

 

 

 

 

 

In an experiment with mice, researchers injected modified CNHs into non-small 

cell lung cancer tumors and saw significantly retarded tumor growth. They also 

Figure 2. Structure of a carbon nanohorn (17). 
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observed the migration of these CNHs to the adjacent axillary lymph node—a major site 

of breast cancer metastasis. Due to these findings, researchers believe that these 

modified water-dispersed CNHs have the potential to be excellent drug carriers for 

chemotherapy, specifically against cancers that include lymph node metastasis (7).  

Carbon nanomaterials are proven to have many advantages in the field of 

theranostics and nanomedicine. They continue to be the subjects of much research as 

they have their novel properties explored more in depth. CNMs seem to have much 

potential to help improve upon cancer therapy and diagnostics and may aide in making 

treatments more personalized as well. Hopefully carbon nanomaterials will fulfill their 

potential and become the major theranostic agents in the future.  

 

INTRODUCTION TO PROJECT 

 As noted above, carbon nanomaterials have much potential in bioimaging and 

theranostic delivery for cancer treatment. The goal of this project was to prepare a novel 

carbon nano-onion platinum nanomaterial and test its cytotoxicity and potential for use 

in cancer therapy. This was achieved by attaching cisplatin to the outer shell of the 

CNOs and then testing it against U87 glioblastoma cells.  

 

BACKGROUND 

What are Carbon Nano-Onions?  

Among many other types of carbon nanomaterials, carbon nano-onions (CNOs) 

(Figure 3) are particular CNMs of interest because they have shown to be less toxic 

than other CNMs and have the ability to be internalized by cells. Solubility of the CNOs 
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is greatly increased when their outer surface is functionalized, and functionalization 

increases their potential for theranostic application. Carbon nano-onions (CNOs) are 

characterized by a closed carbon shell and multiple layers which resemble an onion. 

The outer surface can be functionalized to make the material more soluble, which 

allows CNOs to be used for bioimaging and show potential for use in cancer therapy. 

CNOs have already proven effective as agents for cellular imaging. Fluorescent 

compounds can readily be added to the surface of the CNOs and visualized using 

fluorescence microscopy. The CNOs are readily taken up and can be localized to 

specific compartments of cells, which makes them well suited for use in bioimaging (9). 

CNOs are also useful as drug carriers and delivery vehicles. They are small enough to 

travel well through the circulatory system and are effectively taken up by cells. Due to 

their small size, they are able to access a wide range of biological targets. Some 

biomolecules can also be attached to the surface of the CNOs, which broadens their 

potential as intracellular carriers even more (9). In the future, the hope is to be able to 

attach a cytotoxic drug, such as cisplatin, which can be taken up by cancer cells and 

destroy them more effectively.  

 

 

 

 

 

 

 
Figure 3. Structure and microscopic view of 

carbon nano-onions (16). 
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Cisplatin in Chemotherapy 

 Chemotherapy is a treatment that uses powerful chemicals to destroy rapidly 

dividing cells in the body. It is used in the treatment of cancer due to the fact that cancer 

cells grow and multiply much more quickly than most other cells in the body. 

Unfortunately, current chemotherapy treatments affect the whole body, destroying many 

good cells along with the cancerous cells. Finding a way to utilize chemotherapy in a 

more localized area and decrease the side effects that accompany the destruction of 

healthy cells would be a major step forward in the treatment of cancer. 

Cisplatin is a common drug used in chemotherapy. It was the first big 

chemotherapy drug to be used and is sometimes referred to as the “penicillin of cancer” 

(11). Cisplatin operates by forming a platinum complex inside a cell which binds DNA. 

When the DNA is crosslinked in this manner, the cell is signaled to undergo apoptosis 

and the cell dies. Unfortunately, cisplatin can affect the DNA of other cells in the body, 

which may lead to harsh side effects. Though it is one of the oldest chemotherapy 

drugs, is still widely used in treatment today either as the main drug or as part of a 

combination regimen (11). Carbon nanomaterials are now being explored as potential 

drug carriers for cisplatin. Many other 

new therapies using cisplatin continue 

to be explored with the goal of treating 

a more localized area to help reduce 

the harmful side effects that take such 

a toll on the body.  

 
Figure 4. Chemical structure of cisplatin. 
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METHODS 

Preparation of Oxidized-CNOs (ox-CNOs) 

To prepare the oxidized carbon nano-onions, 0.04 g of CNOs were added to a 50 

mL round bottom flask, along with 30 mL of 3M nitric acid. The reaction was then 

refluxed for 48 hours. After 48 hours, the reaction was removed from heat and allowed 

to cool. Next, the reaction was filtered using vacuum filtration to obtain the product.  A 

Millipore 0.20 µm nylon membrane filter was weighed and then placed in the filter 

funnel. The reaction was diluted with deionized water and then poured through the filter. 

After filtering, the ox-CNOs were washed 3 times each with deionized water, methanol, 

and acetone. After washing, ox-CNOs were placed on a watch glass and allowed to air 

dry overnight. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Reaction to prepare ox-CNOs from CNOs in 3M nitric acid. 
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Preparation of Fluorescent-CNOs (fluoro-CNOs) 

To prepare the fluorescent-CNOs, 0.015 g ox-CNOs and dry tetrahydrofuran 

(THF)/dimethylformamide (DMF) (2:1 ratio) were added to a Teflon beaker and 

ultrasonicated for 20 minutes at 37 kHz. The mixture was then added to a 50 mL round 

bottom flask and deoxygenated under nitrogen. 4-dimethylaminopyridine (DMAP), 0.050 

g, 0.050 g of N-hydroxysuccinimide (NHS), 0.080 g of 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC-HCl), and 0.040 g of fluoresceinamine were 

added to the flask. The mixture was briefly sonicated and then refluxed under nitrogen 

for 4 days.  

After 4 days, the reaction was stopped and allowed to cool. The product was 

obtained by using vacuum filtration. A 0.20 µm nylon membrane filter was weighed and 

then placed in the filter funnel on the vacuum. After filtering the original reaction mixture, 

the product was washed 3 times with both THF and acetone. Figure 6 shows the 

addition of fluoresceinamine to the ox-CNOs. 

 

 

 

 

 

 

 

 

 
Figure 6. Reaction to prepare fluorescent-CNOs. 
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Preparation of cisplatin-CNOs (CNO-Pt) 

To prepare the platinum CNOs, 0.015 g ox-CNOs and dry THF/DMF (2:1 ratio) were 

added to a Teflon beaker and ultrasonicated for 20 minutes at 37 kHz. The mixture was 

then added to a 50 mL round bottom flask and deoxygenated under nitrogen. DMAP, 

0.050 g, 0.050 g of NHS, 0.080 g of EDC-HCl, and 0.036 g of cisplatin were added to 

the flask. The mixture was briefly sonicated and then refluxed under nitrogen for 4 days.  

After 4 days, the reaction was stopped and allowed to cool. When cooled, vacuum 

filtration was performed to obtain the product. Again, a nylon filter was used to collect 

the product. After filtering the original reaction mixture, the product was washed 3 times 

with both THF and acetone. Figure 7 shows the addition of cisplatin to the ox-CNOs. 

The complete reaction to prepare fluoro-CNOs is shown using functional groups in 

Figure 8. The complete reaction for the preparation of CNO-Pt is also shown using 

functional groups in Figure 9.  

 

 

 

 

 

 

 

 
 
 
 
 

Figure 7. Reaction to prepare CNO-Pt. 
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CHARACTERIZATION AND RESULTS 
 
Ultraviolet-Visible Spectroscopy 

 Ultraviolet-Visible (UV-Vis) spectroscopy is a useful tool to measure the 

absorbance of light by a sample. The perceived color of a molecule on either the 

ultraviolet or visible spectrum is indicated by a particular absorbance number. Energy 

from the different wavelengths of light is absorbed by molecules and can possibly excite 

electrons into higher energy orbitals. Easily excited electrons can absorb longer 

wavelengths of light. In UV-Vis, specific wavelengths of light are passed through a 

Figure 8. Complete reaction to prepare 
fluorescent-CNOs. 

 

Figure 9. Complete reaction to prepare CNO-Pt.  
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solution and the absorbance of light is analyzed. The solution absorbs the light and is 

read and recorded by a detector (12).  

 Ox-CNOs (Figure 10) have characteristic peak near 280 nm. Fluoresceinamine 

has a characteristic peak near 485 nm, as seen in Figure 11. The UV-Vis spectrum of 

fluoro-CNOs is seen in Figure 12. The coupling of the ox-CNOs and fluoresceinamine is 

represented by the peak near 280 nm (characteristic of the ox-CNOs) and the new peak 

near 520 nm (characteristic of fluoresceinamine). Comparing the spectra, we can see 

that the fluoresceinamine was successfully coupled to the ox-CNOs to produce the 

fluoro-CNOs.   
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Figure 10. UV-Vis Spectrum of ox-CNOs in MeOH. 
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Infrared Spectroscopy 
 
 Infrared (IR) spectroscopy is another useful tool in determining the structure of 

molecules. Different functional groups can absorb infrared radiation at different 

wavelengths based on their shape. As energy is absorbed by a functional group, it 

bends or stretches. The IR spectrometer creates a graph which records the 

wavenumber and transmittance of the stretch or bend (13).  

 The ox-CNOs have a peak near 1680 cm-1 that is characteristic of the carboxylic 

acids attached to the outer shell of the CNOs. Fluoro-CNOs displayed a new band near 

1580 cm-1 which is characteristic of the attachment of fluoresceinamine as seen in 

Figure 13. This same set of peaks can be seen in the attachment of the Pt of cisplatin 

as observed in Figure 14. These peaks confirm the presence of the materials attached 

to the ox-CNO material. 
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Figure 13. Overlay of the IR Spectra of p-CNO, ox-CNO, and fluoro-CNO 



 
 

19 

 

 

 

 

 

 

 

 

 

 

 

Fluorescence Microscopy 

 Fluorescence microscopy uses fluorescence or phosphorescence to analyze the 

properties of a substance instead of reflection and absorption. Fluorescence can be 

observed in some substances that absorb light or electromagnetic radiation and in turn 

emit light. It is very beneficial because it makes it possible to visibly see specific parts of 

some substances (14).  

 Fluoro-CNOs were analyzed under regular light and at excitatory wavelengths to 

view fluorescence. Fluoresceinamine is excited and fluoresces at a lmax of 496 nm. At 

nonexcitatory wavelengths, the fluoro-CNOs were seen as black spots only (Figure 15). 

Under the excitatory wavelengths of light, parts of the fluoro-CNOs were visibly 

fluorescing (Figure 16), confirming the attachment of fluoresceinamine to the outer CNO 

shell.   
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Figure 14. Overlay of the IR Spectra of p-CNO, ox-CNO, and CNO-Pt 
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Figure 15. Fluoro-CNOs under white light. 

Figure 16. Fluoro-CNOs under UV light. 



 
 

21 

CELL TESTING 

Procedure 

An in-vitro cytotoxicity assay was performed using Alamar Blue in order to 

measure cell viability. Alamar blue is a cell permeable reagent that contains blue 

fluorescent indicator dye called resazurin. This reagent is useful because it is non-toxic 

to cells, unlike the more commonly used MTT assay reagents. Resazurin changes 

colors in response to a metabolic reduction in cells and the reduced form fluoresces 

proportionally to the number of living cells present (15). Therefore, it can quantitatively 

measure cell viability in each well. 

In this Alamar blue assay, U87 glioblastoma cells were plated onto a 96 well 

plate and allowed to grow for approximately 24 hours. Once cultured, the cells were 

treated with various concentrations of each of the ox-CNOs, fluoro-CNOs, and platinum-

CNOs. The plate was incubated for 24 hours and then placed on a plate reader to 

determine cell viability. 

  

 

 

 

 

 

 

 

 
Figure 17. Alamar blue assay after 24 hours.  
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Results 

 As mentioned above, the Alamar Blue assay was used to test cell viability of U87 

cells after treatment with the various CNOs. Ox-CNOs and fluoro-CNOs were tested 

against the cells each at a concentration of 10 µg/mL. Percent viability of the ox-CNOs 

and fluoro-CNOs was approximately 50% (Figure 18). The platinum-CNOs were tested 

against the cells at concentrations of 1, 5, and 10 µg/mL. Percent viability of the 

platinum-CNOs was near 75% (Figure 19).  

 

 

 

 

 

Figure 18. Results from testing cell viability of CNOs. 



 
 

23 

 
 
 
 
CONCLUSIONS 
 

In conclusion, CNOs were able to be successfully oxidized and functionalized 

with fluoresceinamine. This was confirmed by UV-Vis spectroscopy, IR spectroscopy, 

and fluorescence microscopy. UV-Vis confirmed the coupling of fluoresceinamine to the 

ox-CNOs to produce fluoro-CNOs, represented by the peak seen at 520 nm on the 

spectra. IR spectroscopy showed the characteristic peak of fluoresceinamine at 1580 

cm-1 after coupling to the ox-CNOs. Fluorescence microscopy further confirmed the 

attachment of the fluoresceinamine as it could be seen visibly fluorescing under 

excitatory wavelengths. The novel CNO-Pt nanomaterial was also successfully 

prepared and characterized by IR spectroscopy. After running the IR on the CNO-Pt 

Figure 19. Results from testing cell viability of CNO-Pt. 
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nanomaterial, the spectrum showed an expected peak near 1580 cm-1 which confirmed 

the attachment of cisplatin to the ox-CNOs. Ox-CNOs and fluoro-CNOs tested against 

U87 glioblastoma cells showed approximately 50% cell viability after 24 hours. The 

platinum-CNOs showed near 75% viability at all concentrations.  

The CNO-Pt material appeared to have killed near 25% of the U87 cancer cells 

at each concentration after only 24 hours. As previously mentioned, some carbon 

nanomaterials have been shown to stay in circulation and continue releasing their drug 

for an extended period of time. This data suggests that this novel CNO-Pt material could 

be a potential candidate for use as a theranostic delivery vehicle in cancer therapy. 

Further experimentation will help to provide more conclusive data on this CNO-Pt 

material and how useful it might be in nanomedicine.  

 

FUTURE WORK 

 Carbon nano-onions, along with other types of carbon nanomaterials, appear to 

have much promise for use as theranostic agents. The CNO-Pt material shows 

potential, but more experimentation and data will be required to conclude their full 

capabilities as theranostic agents. In the future, more data will be collected through the 

use of Raman spectroscopy. A platinum analysis will be conducted using ICP 

(Inductively Coupled Plasma) spectroscopy to ensure the incorporation of the platinum 

in the CNO-Pt material. An MTT assay will be performed to assess cytotoxicity of the 

CNO materials in hopes of gaining more data to support the potential for use in the field 

of theranostics.  
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