Ouachita Baptist University
Scholarly Commons @ Ouachita

Teaching Aids in Mathematics

Sandra Lee Sawyer
Ouachita Baptist University

Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses
Part of the Educational Methods Commons, and the Science and Mathematics Education Commons

Recommended Citation

Sawyer, Sandra Lee, "Teaching Aids in Mathematics" (1969). Honors Theses. 623.
https://scholarlycommons.obu.edu/honors_theses/623

This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Honors Theses by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact mortensona@obu.edu.

A Research Paper

Presented to

Mr. Ralph Ford

In Fulfillment
 of the Requirements for
 Honors Special Studies 491

by
 Sandra Lee Sawyer

May 1969

For many years, mathematics classes have had a traditional aura about them. The textbook has been the major source of material. The typical lesson consists of review assignments discussed in class, presentation of the new material usually by the teacher, some applications of these new concepts, and a homework assignment for the next day. This routine is repeated from day to day, term to term. ${ }^{\text {I }}$ The students are acting merely as machines. The teachers ask questions, and the students answer from memory. This is one of the main reasons why there is a lack of understanding in mathematics classes. ${ }^{2}$ Some memorization in learning is required, but the contention is that it can and should be minimized. Mathematics is a topic that cannot be learned by sheer memory. A student of mathematics must minimize memorization and maximize reasoning to find the correct method for a problem. If a student has something tangible that he can hold, see, feel, and better yet if he can make it for himself, much more retention of the subject is possible. Through the use of instructional aids memorization can be minimized and the student's imagination will be challenged. He must still reason to solve problems, but imagination acts as a stimulus to reason. 3

[^0]Instructional materials then are as essentlal for the mathematics teacher as spices are for the chaf. Since mathematics is an abstract, Logical science, mathematics teachers have a special need for instructional materials that lend reality to idea. Multi-sensory alds enable us to teach whth materials that do not depend primarily upon reading aids, Teaching consists of communicating ideas, concepts, and skills to the Iearner. Audiovisual alds can acomplish this communication in a maner that is stimulating, expedient, enjoyable, and profitable to both the teacher and the learner *

The question arises on how to select the alds which will make teaching more effective and learning more efficient. Consideration in the selection and use of aids to Improve learning should include (1) the level of conceptual dufleulty and abstraction of the atd (2) instructional time needed (3) complexity involved in the manipulation of the ald: (4) desirability of each pupil having the ald, (5) the possiblluty of using the ald to develop more than one mathematical concept." ${ }^{6}$

Mathematical teaching alds, generally fall into three broad categories, FIrst are the Itterature alds which add enrichment, broaden the background of the students, and stimulate curlosity?

4Donovan A. Johnson. "Instructional Meterials in the Mathematics Classroom," National Education Association Journal, 56.39, May, 1967.

5xauman and Krullk, 7oc, att.
GHarold H. Lerch and Charles T. Mangrum II, "Instructional Aids Suggested by Textbook Seried, "Aritmetlc Teacher, 12:543, November, 1965.

7Johnson, op dit. P. 40.

Secondy are the audiovisuel alds such as films, flimstrips, video\&apes, overhead projectors, televistion and radia 8 The overhead projector is one of the most potentally valuable aids. In using this machine, the teacher faces his class, while information is projected over his shoulder, to the front. Thus elass attention is focusod upon the projection while the teacher can watch the elass for questions. Also the students to the rear of the class can enstly see the large clear dugrams and materlals. To discuss some tople later in the class period or even the next day. overlays can be usod. prfficult materlal and diagrans an be propared in advence and saved to ro-used in future yoars. An overlay is an extra plece or two of oallulold, xsually hinged with a piece of masking tape to the Irame. These may be placed over the orlglnal stencil and witen upon or used to add to the diagram as needed,

How is this machine operrated First of all, the materlals must be propared by transforring them to stenclis made of cellulod with a surpounding cardboard frame. These stencils are placed on the machine* where they are projected onto the wall or screen. The stencflis are prepared with spectal types of grease penclls or ink. The projection is accomplished by the blocking of light by the lines made by the grease pencil ${ }^{10}$

In the eleventh year mathematics course, the losson in the number of Intersections of algebraze curves causes teachera and puplls considerable

[^1]difficutty: The difficulty arises from the need to "movel curves in order to demonstrate all posilble stuations. When the overhead projectov is used for a lesson like this, it is possible to prepare the following materials which can be kept from term to term:
(a) a stencil of a graph grid
(b) a large parabola overlay
(c) a circle overlay
(d) a hyperbola overlay (ax $\left.-b y^{2} \equiv d\right)$
(e) a hyperbola overlay ($x y=k$)
(f) a striaight line geid, in

Another use that can be made of the overhead projector is in teaching students how to read tables such as the logarithmic or trigonometric tables. Also by outting small chamels in the cellulaid overlays, it is possible to 1llustrate some locus problems by actually moving the lines involved using -yelets 12

There are vast curricular changes in mathematics. Innumerable workshops, courses and institutes are springing up to educate mathematics teachers to this change. There are some problems with this however. It is difficult to provide workshops or other training courses for a signtlcant number of teachers of mathematics. Many teachers teach more than one subject and could require re-education in as many as three or four areas. One solution to these problems may lie in the use of newer media, particularly radio and television. In his booklet What Psychology Can We Trust? Goodwin

1Kauman and Krulik, op. Eit., p. 40.
$12_{\text {Tudd., pp. }}$ 41-2.

Watson states:
Television is qualilatively as well as quantitatively influential. The plotures and sound have a life-like impact, far more impressive than print. Communities deeply concerned about finding better textbooks have given very little effective attention to the more potent oducational medium. 13

There are four prineipsi uses of television as an instructional medium; They are in-service teacher training, classroon instruction. enrichment and provision of a course in mathematics not otherwise available, 14

The following is a typioal example of the use of television in a junior high school. In the Arlington Helghts Public schools, the design for closed-circuit television began with the plaming of a juntor high school in 1957. The pressure of increasing enrollments and strong demands on the financial resources of the district deferred the installation until the spring of 1965 . By 1967, there was a fully equipped television studio, 15

In the funlor high school, each of the three closedmaircuit installations ls designed for exclusive use of a single building with personnel within each bullding assigned responstuilities for programing. Programs may be shared with other buildings through exchange of prepared videotapes.

[^2]Each of the studios is equipped with two vidicon cameras, a videotape recordex: adeomodulator; swtching atevice, and othet relative equipm ment such as lights and mieraphones necessary to televise high qualtty presentation over an RF distribution system. ${ }^{16}$

What are the objectives of this? Proper use of the media brings about more effective use of teacher time and directs the teacher's efforts toward the individual need of students. The quallty of lesson presentations improves. The educational experience: of students is expanded by ntilizing outside talent, ${ }^{1 \text { ? }}$

The third category of teaching aids is models and manipulative materials. Some of these are demonstration aids such as the number Ine, hundred board. an area demonstration device, and a silde mile, Laboratory devices consist of such instruments as place value boards where boards are fitted with pockets to teach the place value of a numeration system, number sticks, spin dials, area aids, and geometry boards whers pegboard are designed to demonstrate formulas and theorems by use of pegs and string. An assortment of other instructional aids is available. Computation devices such as calcualtars, abacuses, and computers may be used. 18

Two problems that are marginally posisible without a calculator, but that might be easier with one are an intuitive approach to the law of axponents and an intuitive approach to the Pythagoras theorem, 19

[^3]The abacus is not as automatie as electronic compaters, but in many respects it is superzon to such machines. The down time of some electronic computing machines is twentymive per eent. The abacus rellable (no dow theo) and with some practice 1 娄 can beone waluable assisting agent in computation. By using this instrument, the only mental process involved is the actual computation. The dbacus porforms the necessary momory work. Tts chief advantage is the econony of time The numbers on the abacus are represented by wooden beads, systematically amranged on a frame that constitutes the abacus. The abacus can be ased for addition, subtraction, multhpllathon, divion, and finding square roots and abe roots. The answers obtained depend only on the size of the abacus, the number of columis of beads, and the abllity of the operator to avoid eareloss mism takes. The abacus is a very useful ald and is a forerunner of the modern computing machine. 20

Cost is the main hindrence of the use of computers in secondary schools. This problem is boing somewhat alleviated tue to the intriguing development of the tine-sharing monttor or operating system whereby several program may be run slmultanously throug a large mecine. wtha anote control console placed in a classroon or on a portable platom, the instructor and students essentially have most of the facilities of a large-scale system available on demand. A computer systom was set up at the Untwersity of Minnesota in mad-1965. The students ith the plot oxperinent had access to

[^4]the teletype console which was connected directiy by telephone communication to the computer. Thus programs could be run, and results obtained as soon as the students had collected the data. Students could experienoe the satism fraction of communicating with the computer themselves: this served as a great motivating as well as instructional add. The premstored program, Polfir, required only that paire of (x, data points be put into the mackine, The computer then produced the equations of the best first, second, thifd.... eleventh degree curves through these points. The second pre-stored program, XYPLOT, required only that an equation be put in. It was capable of plotting a graph of any equation put in if proper limits and parametors were provided. There was no programming on the part of the students. The students needed only to collect the date, analyze it. with the ald of the computer, and interpret results. The students all gained a better understanding of mathematios 21

The following are examples of other instructional aids in various areas of mathematics. There is a serles of alds manufactured by the W: W. Welch Scientific Company, Chicago, Illinots, called the "Dynamic Geometry Instruments. \# One important figure which can be used extensively for many theorems and concepts is the "Dynamice Extensive Triangle with Constant Midpoints." It is useful in teaching lessons on the intersection of the medians, the segment joining the midpoints of two sides of a triangle, and relations between altitudes and medians. At the ond of each lesson, several of these instruments mifght be passed around so that the students can handle

[^5]the models and get the "feel" of the median, an altitude, etc. Also there are models of the "Dynamic quadrlateral" with adjustable sides that form a square, rectangle, parallelogram, etc. 22

One firm, the Dictation Disc Company, 170 Broadway, New York, New York, has come up with another aid for geometry teaching. This one is audio, rather than visual. It iscalled the rDDC Learning Aid for Geometry." It consists of a twelve-inch long-playing record containing 350 odd facts all needed in geonetry. The items are grouped by deflnitions; postriates, and theorems. The recarding is accompanied by a transcript of each fact on the aisc. ${ }^{23}$ For the more advanced students, the Library of Science, 59 Fourth Avenue, New Yoik, New York has several kits whil effectively illustrate mathomatical prinolples. Their "Brainiac $\mathrm{K}-30 \mathrm{M}$ and "Gentac" kits enable the student actually to build and use simple computer machines which perform expertiments in logic and mathematics. One kit which can be helpful is their "Probability and Statistics Laboratory." In the twelfth year, for example, the kit can be used to perform experiments in sampling (white and black beads are used as the "population"), cain flipping to demonstrate the concept of a central tendency, probability by the use of a pair of diae, ete. 24

22Kaufman and Kruluk, op. cit. . pp. 44-5.
23Ibxd.
24rbld. p. 49.

Curvostitching is a wolcome change from the usual tyraniy of pencil and paper Batceily $1 t$ consists of constmectug ftwightint envelopes by stitching with colored thread of yem. A student is able to make pattoms of a parabola, hyporbola, slyspsa, ste, 25

As one can see there are many aids that may be used to promote and stimulate learning of students in the field mathematics. These are only a fow Whthin a few years, maye all, schools will be able to have ingtructional aids of some kind

24 mamar, op. cit.. p. 44.

Atta, Prank Van. "Calculators in the Classroom," Arithmetic Teacher, 14:6501. December, 1967.

Johnson, Donovan A. "Instructional Materials in the Mathematics Classroom," National Education Association Journal, 56:39-40, May 1967.

Kaufman, Irvin and Stephen Krulik. Multi-sensory Techniques in Mathematics Teaching. New York: Teachers Practical Press, Incorporated, 1963.

Kelsey, Kenneth W. "Exercises in Computer Assisted Physics and Mathematics," School Science and Mathomatics, 67:119-123. February, 1967.

Kema, I. A. Understanding Mathematics with Visual Aids. New Jersey: Littlefield, Adams and Company, 1962.

Lerch, Harold H. and Charles T. Mangrum II. "Instructional Aids Suggested by Testbook Series, " Arithmetic Teacher, 12:543-6, November, 1965.

Montgomery, James. nThe Use of Closed Circuit Television in Teaching Junior High Mathematics," School Science and Mathematics, 68:747-9, November, 1968.

Suchy, Robert R. Madio and Television in Science and Mathematics. ${ }^{\text {. }}$ National Association of Secondary Sohbol Principals Bullotin, 50:125-8, October, 1966.
"Television in Mathematics Education," Arithmetic Teacher, 14:596.602. November, 1967.

[^0]: ${ }^{1}$ Trvin Kaufman and Stephen Krulik, Multi-sensory Techniques in Mathematics Teaching (New York: Teachers Practical Press, Incorporated, 1.963). p. 1.
 ${ }^{2}$ L. A. Kenna, Understanding Mathematics with Visual Aids, (New Jersey: Littlefield, Adams and Company, 1962), p. 1.
 ${ }^{3}$ Ibid.

[^1]: Bohnson op. atu.p.40.
 $9_{\text {Raufman and krulite op. eltwe }} 40$. ${ }^{10} \mathrm{~Tb}$ 雷。

[^2]: 13Robert i. Suchy, Radio and Television in Science and Mathematios," National Association of Secondary School Principals Bulletin, 50:126. October, 1966.

 14n tolevislon in Mathematies Hiducation;" Arithmetic Teacher, 14:598. November, 196%.

 IS James Montgomery, "The Use of ClosedmCircuit Television in Teaching Junior High Mathematics "1 School Science and Mathematics, 68:747, November, 1968

[^3]:
 ${ }^{17}$ Ibid. p. 749.
 18 Johnson, op. cit.5. p. 40.
 19 Hrank Van Atta, "Calculators in the Classroom," Arithmetic Teacher, 142550. December, 1967.

[^4]: 20 Konna, op cit. p. 114.

[^5]: 21 Kenneth W". Kelsey, "Exercises in Computer-Assisted Physics and Mathematies," School Science and Mathematios, 674119-123. February, 1967.

