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ABSTRACT 
Photodynamic therapy (PDT) is a treatment for a wide display of diseases, including 

cancer, that has become gradually widespread. The procedure requires the usage of 

photosynthesizing agents, which are activated in the presence of light. One quite successful 

photodynamic therapy agent is an aromatic structure made up of four pyrrole rings called a 

porphyrin. This research focused on producing the water-soluble porphyrins, H2TPP-3-PEG-OH 

and H2TPP-PiperMe-OH, through the attachment of the starting porphyrin, H2TPPC, with  

3-polyethyleneglycol and 3-piperidinemethanol, respectively. The novel, water-soluble agent 

was purified and characterized by infrared spectroscopy (IR), nuclear magnetic resonance 

spectroscopy (NMR), and UV-vis spectroscopy. Purity was determined using high performance 

liquid chromatography (HPLC). To find the cytotoxicity level of novel PDT porphyrins, H2TPP-

3-PEG-OG and H2TPP-3-PiperMe-OH, the agents were conditionally tested in the presence and 

absence of light, using MTT assay on MDA-MB-231 triple negative breast cancer cells. 
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BACKGROUND 
 According to the National Cancer Institute, roughly 25% of the US population will 

develop cancer at some point within their lifespan. [4,21] Annually, billions of dollars across the 

globe are spent on cancer research, to cure or to improve treatment options for such a diagnosis. 

As of today, the primary treatment for cancer is typically surgical and is paired with radiation 

and/or chemotherapy. This course of action, however, especially when chemotherapy is the 

treatment option, has major and broad side effects for the patient. All rapidly dividing tissues are 

affected, which leads to a loss of hair, extreme loss of appetite, painful digestion, severe anemia, 

and skin sensitivity. Due to the side effects, the dosage that can be administered during treatment 

is limited and reduces the patient’s quality of life substantially. Using chemotherapy, in 

combination with surgery and radiation, as a treatment for cancer, is dangerous. Sensing the need 

for a more target-specific treatment in relation to cancer, researchers began the development of 

Photodynamic Therapy (PDT). 

 

How Photodynamic Therapy Works 

In PDT, an agent, or photosensitizer, is used in combination with a light source to make 

tissue light-sensitive, thereby killing cancerous cells. [1] It functions by allowing a physician to 

inject a PDT agent, which is non-toxic until exposed to specific wavelengths of light, into the 

affected area. Both healthy and malignant cells throughout the body absorb the PDT agent. 

Compared to normal cells, malignant cells take in greater amounts of the agent. [3] After an 

incubation period, from minutes to a couple of days, the agent dissipates from healthy cells and 
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remains in malignant ones. [22] It is still currently being investigated, as to why the malignant 

cells retain the drug for a longer period.  

The physician then directs light at the target tissue, via a laser, UV light, or other light 

source, which is now light-sensitive due to the PDT agent. Upon exposure to the chosen 

wavelength, the PDT agent produces a singlet, reactive oxygen species, or an oxygen  

free-radical, that can destroy cancer cells. The product is believed to treat the cancer by 

damaging the tumor’s blood cells, aiding the body’s own immune system in attacking the 

malignant cells, and killing the cancer cells itself. [4,23] FIGURE 1, below, lays out each step of 

PDT.  

 

  

 

FIGURE 1: 
In part a, light and a photosensitizer is being combined to produce a photochemical 

effect, which triggers tumor necrosis. In part b, the PDT agent is administered, and an 
incubation period is allotted to allow for accumulation of the drug within the 

malignant cells. Then, the affected area is treated with a light source and  
the physician uses a camera to assess the tumor and determine  

if the treatment was effective.  
(http://sites.dartmouth.edu/pdt/)  

 

http://sites.dartmouth.edu/pdt/
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How PDT Came to Be 

PDT, in a modern sense, is a new, evolving science, but the idea of it is almost ancient. 

After careful examination of ancient German, Danish, and French texts, one sees light used for 

medicinal purposes that can be traced from antiquity to present day. [26] Light first began as a 

therapeutic agent in the Egyptian, Indian, and Chinese peoples. Their cultures used light to treat 

vitiligo, rickets, psoriasis, skin cancer, and psychosis. [24,25] 3000 years ago, the Greeks spoke 

highly of heliotherapy, or total body exposure to the sun. Herodotus, a renowned physician in 2nd 

century BC and the father of heliotherapy, stressed the importance of the sun in the restoration of 

one’s health. These practices and beliefs were forgotten though and were eventually regarded as 

pagan practices, as Christianity became the primary religion throughout the world.  

However, in 1815, the thought of using light as a medicinal tool was rediscovered. A 

physician by the name of Cauvin re-established our perception of the sun’s benefits, as he 

noticed it was an effective therapy for rickets. From this point, research in phototherapy took off 

and it developed into a science. Niels Finsen, a Danish physician, popularized phototherapy 

when his work in the field won a Nobel prize in 1903. [26]  

Light research also looked at the combination of light and photosensitizers through the 

field of photochemotherapy. Individuals used exogeneous sensitizers to absorb photons with the 

intention of a reaction for a therapeutic effect. [26] The photosensitizers, or porsalens, were used 

in India as early as 1400 BC and by Egyptians around 12th century AD. These peoples used 

porsalens obtained from various plants combined with natural ultraviolet light to treat skin 

conditions, such as vitiligo and psoriasis. [2] At the beginning of the 20th century, Oscar Raab, a 

medical student, examined photosensitized reactions in specific ways and ultimately introduced 
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the subject to western medicine. [27] He hypothesized that there was a transfer of light energy to 

chemical energy, but his explanation of the science was incomplete due to the limited 

understanding of fluorescence at the time. In order to address this issue, his teacher, Professor 

Herman von Tappeiner and Dermatologist Jesionek, took over Raab’s research and developed a 

clinical study. [28] They set out to determine if eosin could be used as a photosensitizer in the 

treatment of skin cancer, lesions of the skin, and chondylomata of female genitalia. In 1904, they 

reported that oxygen was required for an affected area to become photosensitized and three years 

later, von Tappeiner compiled the experiments into a book, coining the term ‘Photodynamic 

Therapy’. [29] His predictions for the applications of photosensitizers and his push for the use of 

phototherapy for tumors, make von Tappeiner one of the most important early pioneers for the 

field of PDT.   

 

Are there Advantages or Limitations to Using PDT as a Treatment?  

With more and more findings in the field of photodynamic therapy, many physicians are 

suggesting PDT as a viable treatment option that could one day work as well as standard 

treatments, like chemotherapy or surgery. [16,19] Of course, both physician and patient must keep 

in mind that medicine is never a “one size fits all” situation and some treatments might work 

better for one individual, while not at all for the next. [30]  

Physicians promote PDT because of its benefits for the patient. Due to this treatment 

option, physicians have more control and may eventually be able to selectively destroy malignant 

cells, sparing all healthy tissues. [20]  
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There are, however, advantages and limitations to PDT. One benefit to PDT is, while 

every procedure has some risk, the risks associated with PDT are quite minimal and much less 

dangerous than surgery. The therapy can also be applied in regions of the body where surgery 

may not be an option and may be repeated many times in the affected area if the first treatment is 

unsuccessful, unlike radiation therapy. [22] PDT is also a much safer option due to its minimally 

invasive nature, especially for patients considered too high a risk to undergo chemotherapy, 

radiation, or surgery. These patients consist of the elderly, those vulnerable to surgery, those with 

immunological disorders, etc.[20] PDT has fewer adverse effects, shorter treatment time, and is 

usable in outpatient settings, which make it a prime treatment option for patients who are 

considered high risk or for those who wish to make the treatment experience as good as possible 

without reduction of quality of life. [19] PDT also leaves little to no scarring post healing process 

and typically has a lower cost than other treatment options. [12, 18] 

While, physicians say that while PDT is a good option, patients should still understand 

that there are side effects, like every therapy. [10] After treatment, it is common for patients to 

experience photosensitivity, or sensitivity to light due to the medication given. These symptoms 

may include unexpected sunburns or dermatitis on skin exposed to the sun. The medication can 

also cause onycholysis (FIGURE 2), or the lifting of the nail plate from the nail bed. [6,7] To help 

decrease side effects, physicians recommend keeping shades and curtains on windows, wearing 

clothing to cover as much skin as possible, or walking with a darker umbrella, and making sure 

to not rely on sunscreen for at least one-month post-treatment, as it will not prevent any reactions 

the one might have. [18]  
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As it is a new treatment modality and still in development, PDT also has limitations. The 

treatment’s effectiveness largely depends upon how accurately light is being delivered to the 

tumor or affected site. Tumors that are too deep for visible light to penetrate have proven to be 

difficult to treat, as they are not accessible without surgical intervention. For now, PDT only has 

the ability to target cells within 1/3 of an inch of the light source. [18] Oxygenation of the tumor 

and surrounding tissue is also important for PDT. A patient who has a tumor surrounded by 

necrotic tissue will have a limited photodynamic therapy treatment. Without oxygen, free-

radicals, which kill the cancerous cells, are not produced. PDT is also limited to specific sites; 

therefore, the PDT effect only takes place at an irradiated site. With the current available 

technology, treating metastases or performing whole body radiation with PDT is not available. 

[19] Since it functions by targeting tumors, PDT cannot treat cancer that have spread throughout 

the body, nor can it treat diseases, such as leukemia (FIGURE 2). [16]  

FIGURE 2: 
On the left is a photo of onycholysis, or the lifting of the nail plate from the  

nail bed. The image to the right shows what leukemia, a blood cancer, does to the 
body. There is a rapid increase of immature blood cells and due to the 

overcrowding, healthy blood cells cannot be produced.  
(http://biyaninursingcollege.com/what-is-leukemia-its-type-etiology-classificationsign-

symptomdiagnostic-findings-treatment/ (right); https://www.researchgate.net/figure/Onycholysis-
semilunaris-A-is-characterized-by-its-half-moon-shape-and-clear-border_fig19_221924704 (left))  

 

http://biyaninursingcollege.com/what-is-leukemia-its-type-etiology-classificationsign-symptomdiagnostic-findings-treatment/
http://biyaninursingcollege.com/what-is-leukemia-its-type-etiology-classificationsign-symptomdiagnostic-findings-treatment/
https://www.researchgate.net/figure/Onycholysis-semilunaris-A-is-characterized-by-its-half-moon-shape-and-clear-border_fig19_221924704
https://www.researchgate.net/figure/Onycholysis-semilunaris-A-is-characterized-by-its-half-moon-shape-and-clear-border_fig19_221924704
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What Types of Treatments is PDT Used For?  

However, despite its limitations, physicians still developed ways to use the treatment. As 

PDT has grown, researchers have increased their support its use for uses aside from just 

dermatological ones, such as acne, skin lesions, and skin cancers, as you can see in FIGURE 3. 

 

 

 

 

 

 

 

 

 

 

 

Katie, a 21-year-old who suffered from anaplastic ependymoma, or an aggressive form of 

brain cancer, says that she had seven brain surgeries before Dr. Harry Whelan, a neurologist, 

suggested PDT. [5] After three aggressive treatments, the tumors have not rematerialized on 

Katie’s brain. PDT is also being used for esophageal cancers, which affects around 12,000 

Americans every year. [14] To save Francis’ life, the doctor would have had to remove a large 

FIGURE 3: 
Jane underwent PDT for her acne. This is the result after 3 treatments.  

(https://www.skinmdandbeyond.com/faq-face-photodynamic-therapy/)  

 

https://www.skinmdandbeyond.com/faq-face-photodynamic-therapy/
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portion of the esophagus, leaving Francis to eat through a feeding tube for the remainder of his 

life. After his PDT treatment, he reported to Current Science Magazine, “I can eat anything I 

want.” [5] For now, especially in the US, PDT is only approved for patients that have no other 

alternatives and are diagnosed with late-stage esophageal cancer or early-stage lung cancer. [16] 

A new field of PDT is also being explored: photoangioplasty. This treatment uses the 

photosensitizer to break up the plaque build up in blood vessels, so the patients’ arteries are no 

longer clogged. This process is illustrated in FIGURE 4 and FIGURE 5 below. Doctors are 

hoping that these studies will one day offer new options to patients suffering from ischemia, or a 

disease causing an inadequate blood supply to an organ or other part of the body, especially the 

heart muscles. [17] 

             

 

 

FIGURE 4: 
An Illustrated example of a blocked artery due to plaque buildup, that would typically 
be solved using more invasive means outside of PDT. Now, the issue can be solved 

with a photoangioplasty.  
(https://metrohealth.net/healthwise/coronary-angioplasty/) 

 

https://metrohealth.net/healthwise/coronary-angioplasty/
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Currently, verteporfin, a photosensitizing drug licensed for PDT, is used in the treatment 

of age-related macular degeneration (AMD) and pathological myopia. [2] These diseases result in 

damage to the macula, a central area of the retina. AMD also occurs when blood vessels in the 

eyes begin to leak, causing scar tissue build-up in the light sensitive portion of the eye. While 

PDT cannot remove scar tissue already present, it does stop the disease from progressing. [14] 

FIGURE 6 shows how PDT functions within the eye and FIGURE 7 shows the treatment 

illustrated and being used on a woman diagnosed with AMD. 

                     

FIGURE 5: 
An imaging, or real-life, example of a blocked artery due to plaque buildup, 
that would typically be solved using more invasive means outside of PDT. 

Now, the issue can be solved with a photoangioplasty.  
(https://metrohealth.net/healthwise/coronary-angioplasty/) 

 

https://metrohealth.net/healthwise/coronary-angioplasty/
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FIGURE 6: 
PDT can treat AMD by stopping the 

leakage of abnormal retinal tissue in the 
back of the eye. The procedure calls for a 

photosensitizing dye to be injected into the 
patient’s arm, which is then absorbed by 

structures in the eye. The photosensitizer is 
then activated by the laser. Abnormal blood 

vessels are selectively treated without 
damaging any normal tissues.  

(https://www.slideshare.net/JaheedKhan/age-related-
macular-degeneration-a-glimpse-into-the-future-by-

jaheed-khan) 

 

FIGURE 7: 
The image on the left, is an illustrated example of how the laser penetrates the eye during an AMD PDT 

treatment. The photo on the right is of a woman undergoing the treatment.   
(https://retinamaculainstitute.com/photodynamic-therapy/) 

 

https://www.slideshare.net/JaheedKhan/age-related-macular-degeneration-a-glimpse-into-the-future-by-jaheed-khan
https://www.slideshare.net/JaheedKhan/age-related-macular-degeneration-a-glimpse-into-the-future-by-jaheed-khan
https://www.slideshare.net/JaheedKhan/age-related-macular-degeneration-a-glimpse-into-the-future-by-jaheed-khan
https://retinamaculainstitute.com/photodynamic-therapy/
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How is Optimal PDT Achieved?  

To help combat the limitations of PDT and aid in new research, scientists from all over 

the world have been working to improve light dosimetry and develop new photosensitizers, both 

key components in PDT.  

As the depth of the tissue penetration is affected by the light’s wavelength, scientists 

began their research by looking into the science behind light dosimetry. The most frequent light 

source used today is a laser, but other sources include, intense pulsed light, light-emitting diodes 

(LEDs), and light of various colors, like blue, red, and natural sunlight. Researchers found that 

skin treatments typically require the light source to be directly shown on the skin for an 

appropriate amount of time and light for internal cancers, in the bladder, lungs, stomach or 

esophagus, can be delivered by means of small, fiber-optic cables. [18] By using wavelengths of 

600 to 800 nm, researchers have found that light delivery can be enhanced. [8,9,19]  

To have an ideal photosensitizer, it must be able to produce the singlet oxygen necessary 

for the degradation of tumors. [13] It should have a highly absorbent coefficient, or the ability to 

absorb light at a particular wavelength. [20] During testing, the photosensitizer should not accrue 

toxicity in the dark and should selectively congregate in the cancerous cells. There should only 

be cytotoxicity in the presence of light. [13] Also, in a clinical trial, the photosensitizer must be 

chemically pure, stable, and produce minimal skin toxicity. [20] With these characteristics in 

mind, scientists began to develop photosensitizers with the end goal that they would one day be 

used to help cure cancer. 

 

 



P a g e  | 18 

 

The Development of Porphyrins as PDT Agents 

After the development and FDA approval of Photofrin, a hematophorphyrin derivative 

and the first photosensitizer for PDT, the therapy option has been accepted “for treating various 

forms of cancer in many countries…and is also being tested as a possible therapeutic agent 

against abdominal and thoracic cancers, brain, breast, and skin.” [11,13,30] Other porphyrin 

derivatives have also been approved for clinical use: Visudyne, Temoporfin, and Talaporfin. 

These FDA approvals have led to significant PDT research using both natural and synthetic 

porphyrins.  

Recently, researchers have concentrated on using porphyrins as the photosensitizer, due 

to its unique properties of a multiring structure, its presence in biological systems, and its 

photosensitizing abilities. After its detection in 1897, the molecule has been applied in various 

fashions, such as gene regulation, hormone synthesis, and as a solar cell.  

In the words of Igor Stojiljkovic, et. al, [15] “Prophyrins are the most colorful and 

probably most widespread enzyme co-factors in nature.” The porphyrin molecule is a 

heterocyclic macrocycle containing four pyrrole subunits, which is shown in FIGURE 8. 
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The most recognizable structure that contains a porphyrin macrocycle is hemoglobin  

in red blood cells. Characteristics of a porphyrin include a dark purple, photosensitive pigment  

with specific absorption readings when characterizing the created porphyrin with UV-vis 

spectroscopy.  

 
 
 
 
 
 
 
 

FIGURE 8: 
The structure of a porphyrin molecule, with molecular formula C20H14N4. 

(https://en.wikipedia.org/wiki/Porphine) 

 

https://en.wikipedia.org/wiki/Porphine
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RESEARCH  
MATERIALS & METHODS 

Porphyrin Synthesis 

This research utilizes the light absorbing characteristic of porphyrins, which allow the 

molecule to be activated by photons and results in a desired reaction with the targeted cells. The 

goal was to create two, novel PDT agents that were water-soluble and contain typical porphyrin 

characteristics. The two amines used to create the porphyrins in this investigation are amino-

PEG-3-alcohol and 3-piperidinemethanol. 

  

 
 Water solubility was a critical factor in this project as the main goal was to make a 

porphyrin with the intention that it could one day be used in vivo, meaning within a living 

organism. A physician administers PDT agents to a patient through skin application or injection 

to the affected area. As the body consists of roughly of 60% water and the blood has a 

concentration of water approximately 92%, it is important that the agent is water-soluble. This 

ensures successful entry into the cells and allows the drug to accumulate where it is needed.  

 

FIGURE 10: 
The structure of 3-Piperidinemethanol  

(3.79 X 10-3 mol, MW = 115.18) 

FIGURE 9: 
The structure of Amino-PEG-3-Alcohol.  

(1.67 X 10-3 mol, MW = 149.2) 
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Synthesis of H2TPPC 

With the goal of attaching the amines to the porphyrin structure and making the new 

agent water-soluble, first H2TPPC, the starting material, was synthesized. The experiment began 

by adding 3 g of 4-formylbenzoic acid and a stir bar to a clean, dry 500 ml round bottom flask. 

The flask was then placed on a heating mantle and 250 ml of propionic acid was added. Then, 

Gloves were appropriated for protection against the harsh chemicals when adding 1.5 ml of 

pyrrole via syringe. The solution was refluxed for 1 hour and the entire apparatus was wrapped 

in aluminum foil to protect it from light. After an hour, the flask and its contents were left to 

cool. Then, the flask was wrapped in aluminum foil, parafilm was placed across the top, and the 

flask was labeled. The flask was then placed in a freezer overnight.  

The product should then be filtered using a medium sintered glass filter and washed with 

roughly 30 ml of dichloromethane. Washing was repeated until no product remained in the flask. 

The M glass filter with the final product (it should be a purple/black color) was left to dry 

overnight. 

 

Synthesis of H2TPP-3-PEG-OH 

 Once the starting material was synthesized, the acid chloride had to made, so the amino-

PEG-3-alcohol could be attached to the porphyrin structure itself. All required glassware was 

dried in the oven overnight. The reaction is air sensitive, and its environment must stay dry at all 

times. The reaction began by weighting out 0.13 g of H2TPPC, adding it to a 50ml round bottom 

flask, and placing the flask under a nitrogen sparge. Then, 10 ml of Dimethylformamide (DMF) 

and a stir bar was added to the flask. 0.15 ml of thionyl chloride (SOCl2) was then added via 

syringe. The reaction was allowed to sit and stir for 1 hour. The product, H2TPPCl, was green. 
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After an hour, the flask was disconnected from the nitrogen sparge and connected to the 

rotary evaporator (rotovap), as seen in FIGURE 11, using KECK clips. The Rotovap’s purpose 

was to eradicate chemicals that contain lower boiling points from a mixture, while isolating the 

desired product. The mixture was evaporated to dryness. After evaporation of the DMF, the dried 

product was be a shimmery blue-green color. The product was kept under vacuum overnight. 

   

    

 

 

 

 

 

 

 

 

Next, methanol was distilled so it could be used in the final step of the porphyrin 

synthesis. The flask was removed from vacuum and placed under a nitrogen sparge. After 

retrieving a small, clean glass vial, 0.25 g of amino-PEG-3-alcohol was added and then dissolved 

in 25ml of freshly distilled methanol. The reaction was allowed to stir under nitrogen for 1 hour. 

After an hour, the solution was rotovapped to dryness, evaporating all traces of methanol. The 

FIGURE 11: 
This is a photograph of a Rotovap. Glassware 
is connected to the machine using KECK clips 

(green adapters). All unwanted solvents are 
removed via vacuum, are trapped in the 

condenser, and are collected in the larger flask 
for later disposal. It utilizes a hot water bath to 

prevent the mixture from freezing during 
evaporation. 
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final product was be a deep purple color, as seen in FIGURE 12. This product was named 

H2TPPC-3-PEG-OH. Next, the product was purified using column chromatography.  

       

 

Synthesis of H2TPP-3-PiperMe-OH 

The porphyrin synthesis was repeated using a second amine, 3-piperidinemethanol. 

However, the acid chloride reaction began with 0.25 g of H2TPPC and 0.25ml of thionyl 

chloride. The remaining synthesis was identical to that of H2TPP-3-PEG-OH, with the 

substitution of 0.437 g of 3-piperidinemethanl for animo-PEG-3-alcohol in the final reaction. 

This product was named H2TPPC-3-PiperMe-OH. Next, the product was purified using column 

chromatography.  

FIGURE 12: 
These are photographs of the final porphyrin product. Notice the color is 

purple, a characteristic of a porphyrin.  
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Summary of Porphyrin Synthesis 

So, in summary, the porphyrins were synthesized through a three-step reaction process: 

 

 

  

 

FIGURE 13: 
In step 1, 4-formylbenzoic acid (2) was reacted with pyrrole (1) in propionic 

acid forming H2TPPC (3) 

 

FIGURE 14: 
In step 2, H2TPPC (3) was reacted with SOCl2 in DMF to form 

 Acid Chloride (4), or H2TPPCl. 
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FIGURE 15A: 
Finally, in step 3 A, the acid chloride (4), or H2TPPCl, was reacted with the 

amine, amino-PEG-3-alcohol, in methanol to form the  
final product, H2TPP-3-PEG-OH. 

FIGURE 15B: 
Finally, in step 3 B, the acid chloride (4), or H2TPPCl, was reacted with the 

amine, 3-piperidinemethanol, in methanol to form the  
final product, H2TPP-3-PiperMe-OH. 
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Purification of the Porphyrin Products 

Low pressure liquid column chromatography was used for the porphyrin purification. 

This type of chromatography was used to separate proteins, nucleic acids, or small molecules in 

complex mixtures. It uses a liquid phase, which is mobile, and a solid phase, which is stationary. 

The desired molecules in the mobile phase are separated based on their differing physiochemical 

interactions with both the stationary and mobile phases. [32] 

Low pressure liquid column chromatography was prepared by setting up a glass column 

with pressurized air at the top of the apparatus, as seen in FIGURE 16. The column material, or 

slurry, was prepared 24-hours in advance by mixing LH-20 with 50:50 MeOH- H2O, or G-50 

with Milli-Q H2O, so that the material could hydrate under the added eluent.  

          

 

 

 

 

 

 

 

 

 

FIGURE 16: 
The photo above shows an example of low pressure liquid column chromatography. Notice the air 

apparatus at the top of the glass column (seen in photo on left), the product being filtered through the 
LH-20 column material, and the collection of the product at the bottom in an Erlenmeyer flask.  
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Each porphyrin was purified separately by first passing it through 0.45mm nylon syringe 

filters and then through Sephadex LH-20 using a 50:50 methanol/water mixture as the eluent. 

The material was subsequently purified by passing it through 0.45mm nylon syringe filters and 

then through Sephadex G-50 using Milli-Q H2O. The purified material was then passed through 

0.45mm nylon syringe filters and a final column of Sephadex G-50 using Milli-Q H2O to ensure 

purity. Between each column, the material was rotovapped. During collection of the material, 

close attention was paid to the column to ensure only the dark purple/pink materials, which is the 

porphyrin, were collected. After purification, the material was tested for purity using HPLC and 

characterized by UV-vis and 1H-NMR spectroscopy.  

 

RESULTS 

High Performance Liquid Chromatography  

High Performance Liquid Chromatography (HPLC) is a tool used in analytical chemistry 

to determine the purity of a material. It is able to separate, identify, and quantify each component 

in a mixture. Each component within the sample will interact slightly different with the 

stationary phase, causing different elution rates for each component and leading to the separation 

of materials as they elute out of the column. The HPLC instrument uses a pump to pass a 

pressurized liquid and the sample through a column filled with a stationary phase. This leads to 

the separation of components in a mixture. FIGURE 17 and FIGURE 18 show the HPLC results 

for the novel porphyrins. 
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Prepared samples were dissolved in Milli-Q H2O and analyzed. H2TPPC-3-PEG-OH 

indicated a 98.8% purity and H2TPPC-3-PiperMe-OH indicated a 99.3% purity. The HPLC 

analysis was completed using a Waters Nova-Pak C18, 3.9 x 150 mm column, with 100% 

acetonitrile at a flow rate of 1.00 mL/min.  

The purity of a material is tested because the development of a pure photosensitizer 

allows higher dosages to be given to patients and decreases the amount of side effects a patient 

may have, such as skin photosensitivity. [26]  
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FIGURE 17: 
HPLC results for porphyrin H2TPP-3-PEG-OH. The sample indicated a 98.8% purity.  

FIGURE 18: 
HPLC results for porphyrin H2TPP-3-PiperMe-OH. The sample indicated a 99.3% purity.  
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Characterization of the Porphyrin: UV-Vis Spectroscopy 

Ultraviolet-Visible Spectroscopy (UV-Vis) a tool used in analytical chemistry to 

determine the absorbance a particular sample has. “Molecules containing π-electrons or non-

bonding electrons can absorb energy in the form of ultraviolet or visible light to excite these 

electrons to higher anti-bonding molecular orbitals.” [31] The more easily excited the electrons, 

the longer the wavelength of light it is able to absorb. The instrument functions by allowing a 

beam of light from a visible and/or UV light source, to separate into its component wavelengths 

by a prism or diffraction grating (monochromator). One beam passes through a small transparent 

container, called a cuvette, that contains the sample. The beam’s intensity is measured by 

electronic detectors and are compared to a control sample. The UV region is typically 200 to 350 

nm, while the visible portion is from 350 to 800 nm. Characteristically porphyrins have a strong 

reading at 400 nm, called the “Söret” band, and a series of satellite absorptions from 600 to 800 

nm, called the Q-bands or the “fingerprint region”. [20]       

 

 

 

 

 

 

 FIGURE 19: 
The UV-vis spectroscopy diagram above shows how light is transmitted through a color filter and 
a monochromator, hits the sample, and data is processed in absorbant amount and wavelengths. 

(https://commons.wikimedia.org/wiki/File:Schematic_of_UV-_visible_spectrophotometer.png) 

 

https://en.wikipedia.org/wiki/Ultraviolet%E2%80%93visible_spectroscopy#cite_note-pri-2
https://commons.wikimedia.org/wiki/File:Schematic_of_UV-_visible_spectrophotometer.png
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The UV-Vis of both H2TPP-3-PEG-OH and H2TPP-3-PiperMe-OH were obtained. In the 

table below, each porphyrin demonstrates a Söret band at approximately 414 nm, which 

corresponds to a wavelength of maximum absorption, and contained a satellite region with 

appropriate Ɛ values, as shown in FIGURE 20 and FIGURE 21. Accurate sample masses were 

diluted to stock solutions of 25 or 50 ml.  

 

 

 

 

 

 

Peak (nM) Ɛ (mM-1cM-1) 

409 424.55 

522 38.19 

558 20.15 

593 15.89 

653 14.41 

Peak (nM) Ɛ (mM-1cM-1) 

414 363.85 

520 8.02 

541 8.10 

581 4.22 

640 3.79 

FIGURE 20: 
UV-vis results for porphyrin H2TPP-3-PEG-OH.  

The epsilon values were calculated by  
Beer′s Law:  𝐴 = 𝜀𝐶𝑙 

  

 

FIGURE 21: 
UV-vis results for porphyrin H2TPP-3-PiperMe-OH. 

The epsilon values were calculated by  
Beer′s Law:  𝐴 = 𝜀𝐶𝑙 
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Characterization of the Porphyrin: NMR Spectroscopy 

Nuclear Magnetic Resonance Spectroscopy (NMR) is a technique used for the 

characterization of organic molecules that contain hydrogen atoms. Every NMR sample is 

prepared in a thin, glass tube (FIGURE 22), or NMR tube. When ready, the sample is placed into 

a spinning holder inside of a very strong magnet. Then, the results are placed in a graph.  

 

 

 

 

 

 

 

 

 

 

After comparison of the 1H-NMR of each anime and the final porphyrin product, the 

anime successfully attached to the R group on the porphyrin core structure, as seen in FIGURE 

23 and FIGURE 24.  These results confirmed that the intended porphyrin was produced and 

could proceed to the next step in the research.  

 

FIGURE 22: 
The photo above is of a glass tube used for 1H-NMR. 
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FIGURE 23: 
The results from the 1H-NMR show that that H2TPPC combined with the anime to produce 
the final product, H2TPP-3-PEG-OH. The 1H-NMR for amino-PEG-3-alcohol is on the left, 
while the 1H-NMR for the final porphyrin is on the right. Notice how the peaks are added 

together to make the final product.  

 

FIGURE 24: 
The results from the 1H-NMR show that that H2TPPC combined with the anime to 

produce the final product, H2TPP-3-PiperMe-OH. The 1H-NMR for 3-
piperidinemethanol is on the left, while the 1H-NMR for the final porphyrin is on the 

right. Notice how the peaks are added together to make the final product. 
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MTT ASSAY OF TNBC CELLS 
In many cancer diagnoses, PDT is given to the patient as a treatment option, not as a 

primary choice, but because it is typically the patient’s only option. This is the case for 

individuals diagnosed with MDA-MD-231 triple-negative breast cancer (TNBC). In the United 

States, 1 in 8 women are diagnosed with breast cancer. Those diagnosed with TNBC account for 

nearly 10-15% of all breast cancer cases. Treatment options for TNBC are restricted due to the 

cancer cells not expressing genes for estrogen (ER), progesterone (PR), or human epidermal 

growth factor (HER2) receptors. Cancers with the receptors can be treated with standard cancer 

treatment options, such as chemotherapy. The chemotherapy drug sends a signal to the cancer 

cell to “stop growing”. However, due to the lack of receptors on TNBC cells, a message to “stop 

growing” cannot be transmitted. Individuals diagnosed with TNBC have a high likelihood of 

reoccurrence and an increased risk of dying within five years of diagnosis. PDT is highly 

recommended in cases of TNBC, due to standard cancer treatments having limited effectiveness.  

After characterization, the porphyrins were tested against TNBC cells to determine how 

effective they would be as a treatment option for PDT. To begin, MDA-MD-231 TNBC cells 

were cultured and then plated in 2, 96 well-plates. Approximately 72-hours after plating,  

H2TPP-3-PEG-OH and H2TPP-3-PiperMe-OH were tested in multiple concentrations against the 

TNBC cells. Each treatment was added to 8 replicate wells within the 96 well-plate, with one 

plate designated “dark” and the other “light”. Each plate was wrapped in aluminum foil to 

protect against any light.  

After 18-24 hours of incubation, the cells in the “light” plate were exposed to white light 

(0.5 J/cm2) for approximately 16 minutes. Then, the plate was wrapped in aluminum foil and 

returned to the incubator.  The parallel “dark” plate remained in the incubator. 72 hours post light 
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treatment, cytotoxicity of the porphyrin was measured using an MTT assay and was quantitated 

spectrophotometrically.  

 

MTT Assay Results 

MTT assays are widely used to assess cell viability. [33] The drug MTT-formazan is 

catalyzed by mitochondrial succinate dehydrogenase, meaning the assay is dependent upon 

mitochondrial respiration. This also suggests that it indirectly assesses the cellular energy 

capacity of a cell. The MTT assay indicated that cell viability is greater in cells on the “dark” 

plate compared to those in the “light” plate, which were exposed to light. The cytotoxicity for 

each porphyrin is concentration dependent for both cell environments. The purple formazan 

color indicates living cells.   

One is able to discern from the 96 well-plates in FIGURE 25 and FIGURE 26 below, 

there are two controls and two sections of porphyrin testing. The first row is a positive control, 

containing only TNBC cells and media. The next row is also a positive control, containing 

TNBC cells plus DMSO and media. Then, there are five rows, each with a different 

concentration of the porphyrin, tested in 8 replicate wells. The more viable the cells, the more 

purple the well is. If the well is clear, that indicates no mitochondrial activity, meaning cell 

death. The “dark” plate itself is also a control, as you need to confirm the porphyrin is only 

causing cell cytotoxicity when exposed light and the cells are not dying while in the dark.   
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FIGURE 25: 
Above is a photo the “dark” plate in the MTT assay of TNBC cells for the first 

porphyrin, H2TPP-3-PEG-OH. Notice there are two controls and 5 rows of various 
treatment concentrations, with each concentration in 8 replicate wells.  

 

FIGURE 26: 
Above is a photo the “light” plate in the MTT assay of TNBC cells for the first 

porphyrin, H2TPP-3-PEG-OH. Notice there are two controls and 5 rows of various 
treatment concentrations, with each concentration in 8 replicate wells. At 

concentrations higher than 45 µMol, there is significant cell death.  
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This experiment revealed that at lower concentrations the cells exposed to light have less 

cell viability than those kept in the dark. Shown above, in FIGURE 25 and FIGURE 26, is the 

second MTT Assay trial results for the porphyrin product, H2TPP-3-PEG-OH. It is easy to notice 

that in concentrations higher than 45 µmol, the light treated places show significant cell death. 

Treatment concentrations for H2TPP-3-PEG-OH in the first MTT assay were 1, 3, 10, 30, 100 

µmol and the results are graphed in FIGURE 27. In the second MTT assay, the concentrations 

were changed to 30, 45, 60, 75, 100 µmol to better determine the LD-50 for the porphyrin 

against the TNBC cells. The results are graphed in FIGURE 28.  

The second amine, H2TPP-3-PiperMe-OH is still in testing stages and its results will be 

reported in future work by Dr. Joseph E. Bradshaw.  

 

 

 

 

 

 

 

 

 

 

 
 FIGURE 27: 

This graph displays the first spectrophotometric MTT assay results for the “light” and 
“dark” plate of porphyrin H2TPP-3-PEG-OH. The concentrations of porphyrin tested 

were 1, 3, 10, 30, and 100 µMol.   
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With every MTT assay, the goal is to narrow down the LD-50, or the amount of a toxic 

agent (the porphyrin) that is sufficient to kill 50% of a population of animals (TNBC cells) 

usually within a certain time (3 days). The results shown in FIGURE 27 and FIGURE 28 were 

provided by a spectrophotometer, or an instrument that provides a measure of the amount of 

material in the solution absorbing the light. The LD-50 of porphyrin H2TPP-3-PEG-OH was 

slowly being narrowed down, ranging from 25 µmol to 60 µmol. The lower the LD-50 is the 

more toxic the material. This means a lower dosage can be used to treat the patient and therefore, 

decreases the chances of having toxic side-effects.  

 

FIGURE 27: 
This graph displays the second spectrophotometric MTT assay results for the “light” 
and “dark” plate of porphyrin H2TPP-3-PEG-OH. The concentrations of porphyrin 

tested. The concentrations of porphyrin tested were 30, 45, 60, 75, 100 µMol.   
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CONCLUSION   
In conclusion, this research was successful in the creation of two novel, water-soluble 

porphyrins. Each structure, H2TPP-3-PEG-OH and H2TPP-3-PiperMe-OH, was confirmed by 

1H-NMR and HPLC indicated each with high purities of 98.8% and 99.3%, respectively. Both 

also showed characteristics of porphyrins by having the pink or purple coloring in the final 

product and in UV-vis spectroscopy by having a strong Söret band around 414 nm and Q-bands 

from 600 to 800 nm.  

Although results are still pending on H2TPP-3-PiperMe-OH, the H2TPP-3-PEG-OH 

porphyrin appears to kill the TNBC cells when exposed to light in the concentration range 

between 25 µmol to 60 µmol. Under dark conditions, normal growth patterns were seen until the 

porphyrins treatments grew higher in concentration (about 35 µmol). This data indicates that the 

novel porphyrin, H2TPP-3-PEG-OH, may be a viable PDT agent and a possible candidate for the 

treatment against the TNBC cells in mid-to-high concentration ranges. More experimentation 

and trials, however, must be completed to receive more conclusive data.  

 

FUTURE WORK 
 The synthesized novel porphyrins appear to have potential to become PDT agents. In the 

future, further testing will be conducted in an attempt to find each porphyrin’s LD-50, or the 

amount of a toxic agent that is sufficient to kill 50% of a population of animals usually within a 

certain time (3 days), and to establish a trendline for the H2TPP-3-PEG-OH and H2TPP-3-

PiperMe-OH treated cells.  
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Additionally, the porphyrins will be tested to determine if they are viable PDT candidates 

and if the porphyrins have more desirable properties in regard to killing MDA-MD-231 TNBC 

cells.  

 

WHERE IS PDT HEADING? 
 Despite the good the therapy is doing, many areas in PDT pose problems. To realize the 

full potential of PDT, basic physics and engineering issues must be solved. Clinical results could 

be improved remarkably if a direct measurement of light fluorescence distribution during PDT 

was developed and if penetration depth was expanded. Additionally, there could also be 

advancement in light dosimetry, scientists would then have an enhanced understanding of 

tissues’ optical properties, and one could possibly develop a more effective delivery mechanism 

to the treatment site. There are countless opportunities for PDT improvement and many avenues 

in which it might take, including more clinical trials or developing a way to irradiate the entire 

body. [12]  
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KEY WORDS 
Anaplastic Ependymoma – an aggressive form of brain cancer 

Cancer – refers to any one of a large number of diseases characterized by the development of 
abnormal cells that divide uncontrollably and have the ability to infiltrate and destroy normal 
body tissue. Cancer often has the ability to spread throughout your body. 

Condyloma – (Pl. condylomata) a raised growth on the skin resembling a wart, typically in the 
genital region, caused by viral infection or syphilis and transmissible by contact. 

Ischemia – A clogging of the arteries that can lead to pain, inability to walk, and, in some cases, 
amputation of the leg; an inadequate blood supply to an organ or part of the body, especially the 
heart muscles. 

Leukemia – a malignant progressive disease in which the bone marrow and other blood-forming 
organs produce increased numbers of immature or abnormal leukocytes. These suppress the 
production of normal blood cells, leading to anemia and other symptoms. 

Metastases – the development of secondary malignant growths at a distance from a primary site 
of cancer. 

Onycholysis – a common medical condition characterized by the painless detachment of the nail 
from the nail bed, usually starting at the tip and/or sides. 

Porphyria – a family of metabolic diseases that produce chemicals, called porphyrins, which 
absorb sunlight in the skin and thereby cause damage  

Psoriasis – a common skin condition that speeds up the life cycle of skin cells. It causes cells to 
build up rapidly on the surface of the skin. The extra skin cells form scales and red patches that 
are itchy and sometimes painful. 

Psychosis – a severe mental disorder in which thought, and emotions are so impaired that contact 
is lost with external reality. 

Rickets - is the softening and weakening of bones in children, usually because of an extreme and 
prolonged vitamin D deficiency. 

Slurry – a thin sloppy mud or cement or, in extended use, any fluid mixture of a pulverized solid 
with a liquid (usually water), often used as a convenient way of handling solids in bulk. Slurries 
behave in some ways like thick fluids, flowing under gravity and are also capable of 
being pumped if not too thick. 

Vitiligo – is a disease that causes the loss of skin color in blotches. It occurs when the cells that 
produce melanin die or stop functioning. 



P a g e  | 42 

 

REFERENCES 
1. Photodynamic therapy. (2008). In Web MD, Webster's New World Medical 

Dictionary (3rd ed.). Boston, MA: Houghton Mifflin. Retrieved from 
http://ezproxy.obu.edu:2048/login?url=https://search.credoreference.com/content/entry/w
ebstermed/photodynamic_therapy/0?institutionId=5274 

2. Photodynamic therapy. (2002). In I. Morton, & J. Hall, The Royal Society of Medicine: 

Medicines (6th ed.). London, UK: Bloomsbury. Retrieved from 
http://ezproxy.obu.edu:2048/login?url=https://search.credoreference.com/content/entry/rs
mmeds/photodynamic_therapy/0?institutionId=5274 

3. Cabot, Matthew. 2001. “Tomorrow’s Treatments.” World & I 16, no. 3: 128. Point of 

View Reference Center, EBSCOhost (accessed February 12, 2018) 
4. “Photodynamic Therapy for Cancer.” National Cancer Institute, 6 Sept. 2011, 

www.cancer.gov/about-cancer/treatment/types/surgeru/photodynamic-fact-sheet. 
5. Perritano J. Healing rays. Current Science [serial online]. February 11, 2000;85(11):10. 

Available from: Points of View Reference Center, Ipswich, MA. Accessed April 3, 2018. 
6. Zhang, Alexandra Y. “Drug-Induced Photosensitivity.” MedScape, 14 June 2017, 

emedicine.medscape.com/article/1049648-overview. 
7. Ngan, Vanessa. “Drug-Induced Photosensitivity.” DermNet, New Zealand, 2006, 

www.dermnetnz.org/topics/drug-induced-photosensitivity/ 
8. Yoon, I.; Li, J.Z.; Shim, Y.K. Advance in photosensitizers and light delivery for 

photodynamic therapy. Clin. Endosc. 2013, 46, 7–23.  
9. Szaciłowski, K.; Macyk, W.; Drzewiecka-Matuszek, A.; Brindell, M.; Stochel, G. 

Bioinorganic photochemistry: Frontiers and mechanisms. Chem. Rev. 2005, 105, 2647–
2694.  

10. Baile, Walter F., et al. “SPIKES—A Six-Step Protocol for Delivering Bad News: 
Application to the Patient with Cancer.” The Oncologist, AlphaMed Press, 1 Aug. 2000, 
theoncologist.alphamedpress.org/content/5/4/302.long. 

11. Kou J, Dou D, Yang L. Porphyrin photosensitizers in photodynamic therapy and its 
applications. Oncotarget. 2017;8(46):81591-81603. doi:10.18632/oncotarget.20189. 

12. Brown, S.B.; Brown, E.A.; Walker, I. The present and future role of photodynamic 
therapy in cancer treatment. Lancet Oncol. 2004, 5, 497–508 

13. Pushpan, S K, et al. “Porphyrins in Photodynamic Therapy - a Search for Ideal 
Photosensitizers.” Current Medicinal Chemistry. Anti-Cancer Agents., U.S. National 
Library of Medicine, 2 Mar. 2002, www.ncbi.nlm.nih.gov/pubmed/12678743. 

14. Marcus M. The next miracles. U.S. News & World Report [serial online]. March 30, 
1998; 124(12): 74. Available from: Points of View Reference Center, Ipswich, MA. 
Accessed February 13, 2018.  

http://ezproxy.obu.edu:2048/login?url=https://search.credoreference.com/content/entry/webstermed/photodynamic_therapy/0?institutionId=5274
http://ezproxy.obu.edu:2048/login?url=https://search.credoreference.com/content/entry/webstermed/photodynamic_therapy/0?institutionId=5274
http://ezproxy.obu.edu:2048/login?url=https://search.credoreference.com/content/entry/rsmmeds/photodynamic_therapy/0?institutionId=5274
http://ezproxy.obu.edu:2048/login?url=https://search.credoreference.com/content/entry/rsmmeds/photodynamic_therapy/0?institutionId=5274
http://www.cancer.gov/about-cancer/treatment/types/surgeru/photodynamic-fact-sheet
http://www.dermnetnz.org/topics/drug-induced-photosensitivity/
http://www.ncbi.nlm.nih.gov/pubmed/12678743


P a g e  | 43 

 

15. Igor Stojiljkovic, Brian D Evavold & Veena Kumar (2005) Antimicrobial properties of 
porphyrins, Expert Opinion on Investigational Drugs, 10:2, 309-
320, DOI: 10.1517/13543784.10.2.309 

16. Kalb C, Underwood A, Weingarten T. Let there be light. Newsweek [serial online]. 
January 26, 1998;131(4):72. Available from: Points of View Reference Center, Ipswich, 
MA. Accessed February 13, 2018. 

17. Rothenberg R, Barrett W. Lasers target clogged arteries. USA Today Magazine [serial 
online]. February 1998;126 (2633):3. Available from: Points of View Reference Center, 
Ipswich, MA. Accessed February 20, 2018.  

18. Cole, Gary W. “Photodynamic Therapy (PDT) Costs, Side Effects & Recovery.” 
MedicineNet, 8 Feb. 2018, 
www.medicinenet.com/photodynamic_therapy/article.htm#what_is_photodynamic_thera
py_pdt.  

19. Calixto, Giovana & Bernegossi, Jéssica & de Freitas, Laura & Fontana, Carla & Chorilli, 
Marlus. (2016). Nanotechnology-Based Drug Delivery Systems for Photodynamic 
Therapy of Cancer: A Review. Molecules. 21. 342. 10.3390/molecules21030342. 

20. Ethirajan, Manivannan , et al. “The Role of Porphyrin Chemistry in Tumor Imaging and 
Photodynamic Therapy.” Chemical Society Reviews, Royal Society of Chemistry, 9 Aug. 
2010, pubs.rsc.org/en/Content/ArticleHtml/2011/CS/b915149b#cit204. 

21. (2009) SEER Cancer Statistics Review, 1975-2006; In: Horner MJ, R.L., Krapcho M, 
Neyman N, Aminou R, Howlader N, Altekruse SF, Feuer EJ, Huang L, Mariotto A, 
Miller BA, Lewis DR, Eisner MP, Stinchcomb DG, Edwards BK (ed). National Cancer 
Institute, Bethesda, MD 

22. Gersten, Todd. “Photodynamic Therapy for Cancer.” MedlinePlus Medical Encyclopedia, 
National Institute of Health, US National Library of Medicine, 
medlineplus.gov/ency/patientinstructions/000906.htm.  

23. Gomer, C. J.,Rucker, N., and Murphree, A. L. (1988) Cancer Res 48(16), 4539-4542 
24. SPIKES J. D. (1985) The historical development of ideas of application of 

photosensitized reactions in health sciences. In: Primary Photoprocesses in Biology and 

Medicine (Eds R. V. Bergasson, G. Jori, E. J. Land & T. G. Truscott). Pp. 209-27. 
Plenum Press, New York. 

25. EPSTEIN J. M. (1990) Phototherapy and photochemotherapy. N. Engl. J. Med. 32, 1149-
51. 

26. Daniell, M D, and J S Hill. “A History of Photodynamic Therapy.” The Australian and 

New Zealand Journal of Surgery., U.S. National Library of Medicine, May 1991, 
www.ncbi.nlm.nih.gov/pubmed/2025186. 

27. RAAB, O. (1990) Ueber die Wirkung Fluorescierenden Stoffe auf Infusorien. Z. Biol. 39. 
524-46. 

https://doi.org/10.1517/13543784.10.2.309
http://www.medicinenet.com/photodynamic_therapy/article.htm#what_is_photodynamic_therapy_pdt
http://www.medicinenet.com/photodynamic_therapy/article.htm#what_is_photodynamic_therapy_pdt
http://www.ncbi.nlm.nih.gov/pubmed/2025186


P a g e  | 44 

 

28. Von Tappeiner H. & Jesionek A. (1903) Therapeutische Versuche mit fluorscierenden 
Stoffen. Munich. Med. Wochenschr. 47. 2042-4. 

29. Von Tappeiner H.  Jodlbauer A. (1904) Die Sensibilisierende Wirkung Fluorescienrender 
Substanzer, Gasammette Unter Suchunger Uber die Photodynamische Erscheinung. FCW 
Vogel, Leipzig.  

30. Zamzami, N.;Susin, S. A.; Marchetti, P.; Hirsch, T.; Gomez-montgomery, I.; Castedo, 
Kroemer, G. J. Exp. Med., 1996, 183, 1533.  

31. Weerakkody, Amith. “Ultraviolet-Visible (UV-Vis) Spectroscopy | Analytical 
Chemistry.” PharmaXChange.info, 11 Sept. 2012, 
pharmaxchange.info/2011/12/ultraviolet-visible-uv-vis-spectroscopy-principle/. 

32. “Liquid Chromatography Principles.” Liquid Chromatography Principles | LSR | Bio-

Rad, BioRad Laboratories, Inc. , www.bio-rad.com/en-us/applications-
technologies/liquid-chromatography-principles?ID=MWHAS7E8Z. 

33. Chacon, Enrique & Acosta, Daniel & J. Lemasters, John. (1996). Primary Cultures of 
Cardiac Myocytes as In Vitro Models for Pharmacological and Toxicological 
Assessments. 209-223. 10.1016/B978-012163390-5/50010-7. 

http://www.bio-rad.com/en-us/applications-technologies/liquid-chromatography-principles?ID=MWHAS7E8Z
http://www.bio-rad.com/en-us/applications-technologies/liquid-chromatography-principles?ID=MWHAS7E8Z

	Treating Breast Cancer with Light: The Creation of Two Photodynamic Therapy Agents
	Recommended Citation

	tmp.1525974146.pdf.lt408

