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•re, of course, JlalllY' e:x:oept1ons to th.~ rule. But the faet still 

remains, quite a f~w math te~.ohe:re se•m to accept their fate as 

a dull tee.ehe:r, teaching a dull subjeet, never Oftee looking to new 

ani! 1tttr18:u1n~ td••• to 1mp:t>ove their classroom teel'\niques. 

Science, Engl1sh *-nd h1atory elaseee hll'Ye been us1ng . t~ohn1ques 

and g1fDtUea, wh1eh 1t actually what the,- are, tor Jears. But l\iath

emAt1cs has be•n elow to oatch on. There ie noth1~ wrong w1th 

a g1mm1c, 1f it 1• used aJt a teaeh1lllg a1d .snd not s substitute for 
\ 

tsaehing. Bright eolores, pictures, and dtagram• 1n te-~books 

and models,g.-es and other devices 1n the elessroom are good to 

attract attention, and ofte~ th1s 1e all that 11 needed to get 

. etude~ts st$rted. But they should 1lltJstrate the point, to be made 

and not used J••t •s busy work to keep ~ olaae q~let. 

One of tbe l'll08t useful dev1c•s for mathematics 1s v1s,ual aids· 

in the rorm of mCid&ls. Th1 s 1s e•pecia.lly true 1n ·8'eometry olasses 

where the abStrsctrtes$ of the subject may elude a student who 

does not form mental p1etures ••e1ly. The following p&8es ar. 
' 

devoted to the construction, uae and h~story of the f1ve regular 

polth.edra. ro.r a n.theaat1os elaas 1n the $ttoondarJ school • . 

A gc~d wsy to begin a d1S0U8$10ft ef the f1Ye regular polyhedra 

would be to f1rst present the s~lids to the class far observation. 

Instead or poi-nti'ftg out t~t each one has 1dent1eal faees,. ask What 

1s similar abcv.t each •ol1d. Atter tbey have d1ecoYere • . that the 

tetrabedrom. oo~hedrcn, and 1cc•ahe4ron all ha•e oon~ruent t~1anglas 

for faces, tho heXahedron. cr cube, has eoneruent squares rer 

faces, and th• dodecahedron ~as esngruent penta@ons f~ faces. aak 

tlMm to;' coU!lt the ·number of faces for eaeh f1gure. Th1., sounds 
f J ' , 

juYen1.Ue., ·'bfrt trying to count the fac.es on a dodecahedron or on a 
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1oosahedron oan beeome difficult. Perha~•• 1f the class has 

studied descriptive name1ns. they would be able to come up with 

the oorreat and appropriate n&XD.ee for ~A solid. Aek the class to 

make general ste.tement• about the solids and guide them 1n formulatlng 

gener•l assumptions. 

The Pllt'Pose of this 1s to aequa1nt thf! student with the various 

properties of the reg~lar polJhedra b1 obeerYat1cn !'ather., ttv• 

rots roarnor1eat1on cf mate:r1al ~1ven by the teaeher. '!'his,, 1a based. 

on the theory that a person remembers things longer artd understands 

them more fully if he has marte some effert in tne d.1seove:r:y, rather 

than just heart~ it and aeeept1ng 1t w1thout proof. 

Add1t1on•l work With the polyhedra may be done by asking how 

to eonat~uct these models. The ttod~l• aceompany1:rtg th1s t;lflper an. 
of eourae, roueh large~ than ones that would be constructed in claee. 

because they are large eno~h for all students to see •1 th some 

degree of detail. Probablr the first problem the students will 

eneounter in theHr own oonetsuct1on will be mek1n~ an accurate 

pattern for the faee. Construction of equilateral tr1&ft~le and 

squares has probably alre~dy been taught, but few geometry classes 

do much about eo~strueting s re~ular pentagon. The main and most 

obvlous problem 1s how lar8e to llake the angle between adjacent 

&l<Jes. This 18 solved by the formula (N ... 2/N) 180, when.N 1s the 

numb&r of sides 1n the poly·gon. After the eonetrl.lct1on of the 

fqoe psttern 1s done, let them proceed With making an $nt1re pattern. 

Hopefully, they will tu:rn out s1m1l&r to the diagram Oft the next page. 

It this method 1ft too t1me consuming or not su1ted to the cls.es, 

pattertlls of the eol1ds may be run off ahead <>f tlme. 
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The actual p~st1ng or taping the model together 1s e. 't>7orthwh11e 

project. Some students, beea.use they are used to w'orking at a 

slow paee and. are more patient, do qu1 te well 1n this type of work 

which demands a degree of patience that mQst brighter students have 

hot had to develop. In this way, these students have the chance to 

enjoy the sa.t1sfact1on or doing well 1n elass. 

After a few models have been lU&de. the teacher can illustrate 

the idea of a plane passing through each of them by cutting through 

the side. This will show that a plane through a hexahedrol'! and an 

octahedron produces a four-sided figure, in the tetrahedron and 

icosahedron, a fiYe-sided figure. Also illustrate that the figures 

will haTe different dimensions as the angle of the plane passing 

through 1s onan~ed. 

Also stressthe fact that these shapes can be seen .1n nature and 

a.re also man-made. The tetrahedron occurs naturally as a crystal 
. 

of sodium sulphafttimon1ate, the cube as a crystal of cqmmon salt, 

and the octahedron as a crystal of chrome alum. The other two, 

the dedeoshedron and the icosahedron, have been o~erved not as 

orystala but in the skeleto!'UJ of tiny sea animal• called radiolaria. 

They are seen as man-made products in arch1teett1re and recently the 

dodechedrcn has been aeen as a desk calendar, beeause of its twelve 

faces. 

The history "f four of the regular polyhedr&, the tetrahedron, 

hexahedron, octahedron and icosahedron, 18 vague beeuase they 

originated before h1sto~1cal reeords were kept. But 1~ 1s knowft 

that the ancient Egyptians ~ew of them beeause some were used 1n 

their architecture. It 1m thought that the Pythagorean& originated 

three of the regular polyhedra around 500 B.C. Tradition gives credit 
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to · H1ppas~s , a Prthagorean of the 5th Century B.C. , for devising 

the fifth of the regu~•r polyhedra , the dodecahedron . A story 

tells that beeause he too.k ered.it for msk1ng an addition to . the 

perfect ·solids given to man · by the god• • he drowned at sea . 

Later , 1n the 4th Century B.C. , Plato writes of t~e five 

sol1ds in I1gxaeps. In this work, Plato aesoeiated four of the five 

solids with the El!lpedoclean primal elements of s.ll material 'bo41ea -

fire . atr , water and earth. The faot that there were five solids 

and onl:r .· four elements d 1d not hinder Plat¢ ' s theory . , He explained 

the fifth one , the dodecahedron , by associating it w1th the all 

encompassing sphere ot the uftiverse . 

Plato exp1a1ned his aesoe1at1ons like this . Since tne . ea:rth 

1s stable ~nd immovable . it should be represented by the . most 

stable of the solids , the cube or hexahedron.. water is represented 

by the 1eosahdron because water is harder to mov-e than air or 

fire , and since the 1eaaahedron has the most races , it would seem 

harder to move . Fire 1s made of small and acute bodies , and 1s 

sharp and cutttn~ , therefore 1t is represented by the ~etrahedron . 

F11!.allV , a1r is composed of ootahedron solids . His the.cry that the 

d~ecahedr~n represented the universe may have ocme from ,the fact 

that its ~olume 1s the elosest of the f1ve to the volume of the 

sphe-re in which th.ey .are 1!\scr1bed . Beeauee of all the work and 

stU.dy ·Plato devoted to th~ five X'e~ular polyhedra , they a:re . often 

referred to as the Platon1e solids . Euchid also studied the Platonic 

sol1d.e to a great d.eg:ree . In his series of thirteen bt;>oks, £;}!Smept~ . 

he bee1ns with the construction of an equ1latersl tr1a~gle and eoncludes 

with the five solids . The l&At propoe1t1on 1n Element! 1s that no 

other sol14• w1th congruent regular polygons as faces •re ,;: :poss1ble , and 

he proceeds to g1 ve proof f'or this propas1 t1on . 



Johannes Kepler, an· astronomer and mathemat1e1an 1n the late 

16th Century, dld further etstr ot t~ Platon1e sol1da. He aesumed, 

baaed on Plato•• Aae!l\1, that since the tetrahedron had. the 

smalle•t vel.m. for its surface lt should reprea•ftt dryftesa aftd the 

ioosahedr.Oft which he bel1e'f'ed ( 1neor:reetly) to enclose., the largest 

volu.-, represented wetness, because the volu•e-surfaees relation is 

el•~ • quality of dryneae and wetnesa. Th•ref~~. fir~ bein@ the 

driest. it was the tetrahedren, and water, be1n@ the wettest, 1t 

was the 1eo•anedron. The cube was assoeiate4 wlth the. earth beeauee 

of 1ta atablllty and the ootahedron waa .allsce1ated w1th air beO$.UIIe 

held at two oppoa1te vert1e .. , 1t spina freely aad therefor~ has 

the in•tab111ty of' air. The dodecahedron was associated with the 

un1veree beeause it has twelTe faoea and the zod1Ac has twelve 

s1gne. 

Kepler e•en went furtaer to say that the five aolids accounted 

for the numbel" of pla!tets (tt•e·were know at the time) and their 

spao.irtg arount the sun, In his Ultsri¥1 ~Q'IM£!tib1ca of 1596. 

he sayaa 

.''The orb1. t of the Earth is a c1rclea rcund the spl')ere to 
which this e1role belongs, describe a dodeoshedrona 
the sphere 1nel\\d1ng this w111 ~i"Ve th:e orbit ot . 
Mar•, Rowtd Mars deser1.be a tetrahedront the circle 
1nelud1ng this w1ll be the or-1t ef J•p1ter. 1 

Describe a eirole areound Jup1ter•a orb11, the· 
c1role including this w111 be the orb1l or Saturn. 
Now 1nser1be 1ft the earth's orblt an 1CQshedron, the 
c1rele 1nser1bed ln it wtll be the orbit of Venust 
ttte e1rcle 1118C!"1be<! in 1t will be Mureury•a orb1tjl 
Tnia 1s the reason of the number of plantt•.•l 

Kepler also was ~· of the first to atudy the small and sreet 

•tellated dcdeoaaedron. They are ftot convex S()lids, a~.therefore 

not elass1f1e4 as the other 5 solide are, but they do have 

re~ular polygon faces. Lou1a Po1nsott. a French mathematio1&n 1n 



the late 18th Centu~y, add~d the two last regular polyhedra, the 

g:ztea.t dodeoshed.ron and the great 1oosahe~.ron which al•o were not 

cob•ex. Th11 ma~e a total of 9 regular polyhedra. This still 

leaves the nuabet of re~ular sol1de at five, since they are defined 

••· be1ng regular Ofl!?Y•I polyhedra. 

Ludw1s 8ehlaff1 ( 1P14·95), a. Sw1•a methe~tteian, or1~1nated 

the $ymbQl used now for tne regular pol1hedra {P.q), where p 1s 

the ~t•Jaber cf .sides and q 111 the 1\lllllber of polygon$ m.eetbtg at 

eaM. ventr.•x• His ldthod c>f prov1ng there are only r1ve was th1ea 

"Let ( P, q ) ~ any r4!gule.r polyhedra. 1'be •tze ( 1n degrees) 
ot eaoh angle cf the regular polygons form1ng 1ts 
e1de• ean be e~J')res·Hd as 180- ( 360/p), Slnoe i ( p,q) 
1s len .. x, the sum of tne Bftgles at one ve~tex 1e less 
than )60. Therefore., we can set up the foll~1ng 
1nequal1ty• . 

(l8o-J6o;p)q L J6o 
lBO(l-2/p)q '"'- )60 
(p .. 2 )(q ... 2) L 4 

p and q are both ;:::> 2. . If p:=.J, we ean havE! from the 
inequality (J,J). (3 1 4), {J,5). If pa4, we have 
(4,)}, and lf P•5, we have (5 1 )), S1nee there !'no 
allowable value fcr

2
q where P->5, there are no other 

regular polyhedra." 

In ecmelud1n~, o~e pc1ftt stands out from ·all the rest that nse 

been sa1({. Mathelllatlo~ •an be 1nt~rest1~ and enloya~~e . 1t. you 

take the time to make 1t so. A little research an4 s~udy can make 

1tmesn1fl!flll and worthWhile. But it ts ob\t1oue .that,. 11ke so 

many other th1ft~8, teaeMrs and student• alike ge~ t1-.0111 1t what 

they p~t 1nto it. 
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