The Regular Polyhedra: A Study in Visual Aids for Teaching Geometry

Sammye Halbert
Ouachita Baptist University

Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses
Part of the Geometry and Topology Commons, and the Science and Mathematics Education

Recommended Citation

Halbert, Sammye, "The Regular Polyhedra: A Study in Visual Aids for Teaching Geometry" (1972). Honors Theses. 556.
https://scholarlycommons.obu.edu/honors_theses/556

This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Honors Theses by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact mortensona@obu.edu.

The Regulax Polyhedra:
 A Study in Visual Aids for Teaching Geometry
 by: Sammye Halbert

Traditionally, mathematics, past simple addition, subtraction, multiplication, and division, has been thought of as being so boring, irrefelant, and in short, one of the unavidiable evils of school. An duertisement in "The Mathematics Teacher" expressed the general attitude of many students when it said. "Mathematics was invented by an old magician in the desert who, with the heip of his taiking monkey, bakes equation and oupcakes in the hot sun." It seems that many students think mathematice is just one problem arter anotner thet has sone mystical answer iloating around in the air somewhere. The object is to get that answer with a minimun of frort and usually with little or no understanding of why it is the correct answer. The only thing that really matters is that right anower.

For the person who has been able to see through this and has taken the time to try and understand a few "whys" about the subject, mathematics oan become interesting and well worth the time spent studying it. But, unfortunately, not all students are able to do this, or even want to. Most are just trying to discover the "trlek" of how to make the thing work and could not care less why It does.

The tragedy, though, is that, more than $11 k e l y, ~ i t ~ i s ~ t h e ~$ teacher or the tatbook, not the subjeet itself, that is the source of its unpopularity. This is not to say that all math teachers axe bad taachers or that all math textbooks are bad books. It just seems alot of teachers and authors go about their jobs with about as much motivation as many students have in the classroom. There
are. of course, many exoeptions to the rule But the fact still ramins. quite fem math teochews sem to aceept thoir fate as a dull teacher toaching a dull subject, nevar once looking to new and intriguing ldens to improve thair elasmpoon techiniques.

Science English and higtory classes have been using teohniques and gimmies, which is actually what they are, for yaars. But fathomatics has been slow to oatch on there is nothing wrong with a gimmic, if it is used as teaching aid and not substitute for teaching. Bright colores. picturea, and diacrame in textbooks and models.getes and other devices in the classfoom are good to attract attention and oftem this 2 ali that is needed to get students started. But they should $111 u s t r a t e$ the point, to be made and not used just as busy woxk to kep a olase quiet.

One of the most useful devices for methematics is visual aids In the form of models. This is especially true in seometry olasses where the abstractines of the subject mas elude a student who does not form mental pictures agily. The following pages are devoted to the construction. use and nistory of the five regular polyhedra for m mehematics class in the gecondary school.

A grod way to begim a discussion of the fito regular polyhedra would be to firet present the solids to the alass for observation. Instead of pointing out that esch one has identieni faces. ask what $1 s$ similar about each solid. Arter they have discovered that the tetrahedrom, octanedron, and loosancerion all have congruent triangles for faces, the hexahedron, or cube, has congruent squares for faces, and the dodecanedron hac congruent pentagons for fecas ank them to count the number of faces for each figure. Inis sounds juvenisie, brt trying to count the faces on a dodecanearon or on a
icosanedron can become diffioult. Perhaps, if the olass has studied descriptive nameing, they would be able to come up with the correct and approprinte names for fich solid. Ank the class to make general statemente about the solids and guide them in formulating general aspumptions.

The phapose of this is to acquaint the student with the various properties of the regular polghedra by observation rather tham rote memorigation of material given by the teacher. This is based on the theory that person remembers things longer and understands them more fully if he has mate some effort in the discovery, rather than just hearing it and accepting it without proof.

Additional work with the polyhedra may be done by asking how to construct these models. The models accompanying this paper ari. of course, much larger than ones that would be construeted in clase. because they are large enough for all atudents to see with some degree of detail. Probably the first problem the atudents will encounter in their own constmuction will be meking an accurate pattern for the face. Construction of equilateral triangle and squares has probably already been taught, but few geometry classes do muoh about constructing regular pontagon. The main and most obvious problen is how large to make the anglo between adacent Axdes. This is solved by the formula ($N-R / N$) 180 , when N is the number of gides in the polygon. After the construction of the face pattern is done, let them proceed with makine an entire pattern. Hopefully, they will turn out similar to the diagram on the next page. If this method is too time consuming or not suited to the class, patterns of the solids may be run off ahead of time.

The actual pesting or taping the model together is a worthwhile project. Some etudents, because they are used to working at a slow pace and are more patient. do quite well in this type of work which demands a degree of patience that mast brighter students have not had to develop. In this way, these students have the chance to enjoy the satisfaction of doing well in class.

After fow models have been made, the teacher can illustrate the idea of plane passing through each of them by cutting through the side. This w111 show that a plane through a hexahedron and an octahedron produces a four-sided figure, in the tetrahedron and icosahedron, five-sided figure. Also illustrate that the figures will have different dimensions as the angle of the plane passing through is changed.

Also stress the fact that these shapes can be seen in nature and are also man-made. The tetrahedron occurs naturally as a crystal of sodium sulphantimoniate, the cube as erystal of common salt, and the octahedron as crystal of chrome alum. The other two, the dedecahedron and the icasahedron, have been observed not as crystals but in the skeletons of tiny sea animals called radiolaria. They are seen as man-made products in architecture and recentiy the dodechedron has been eeen as a desk calendar, because of its twelve faces.

The history of four of the regular polyhedra, the tetrahedron, hexahedron, octahedron and icosahedron, is vague becuase they originated before historical records were kept. But it is known that the ancient Egyptians mew of them because some were used in their architecture. It is thought that the Pythagoreans originated three of the regular polyhedra around $500 \mathrm{~B} . \mathrm{C}$. Tradition gives credit
to H1ppasus, a Pythagorean of the 5th Century B.C.. for devising the fifth of the regular polynedra, the dodecahedron. A story telle that because he took credit for making an addition to the perfect solids given to man by the gods, he drowned at sea.

Later. In the 4 th Century B.C.. Plato mrites of the five solids in Timaous. In this work. Plato associated four of the five sollds with the Empedoclean primal elements of all material bodies fire, air, water and aurth. The fact that there were five solids and only four elements did not hinder flato's theory. He explained the fifth one, the dodecahedron, by associating it with the all encompassing sphere of the universe.

Plato expiained his associations like this. Since the earth is stable and immorable, it should be represented by the most stable of the sollds, the cube or hexahedron. Water is represented by the 1 cosahdron because water is harder to move than air or fire, and since the icosahedron has the most faces, it would seem harder to move. Fire is made of small and acute bodies, and is sharp and cutting, therefore it is represented by the tetrahedron. Fimally, air is composed of octahedron solids. His theory that the dodecahedron represented the universe may have come from the fact that its volume $1 s$ the elosest of the five to the volume of the sphere in which they are inscribed. Because of all the work and study plato devoted to the five regular polyhedra, they are often referred to as the platonic sollds. Euchid also studied the Platonic solids to a great degree. In his series of thirteen books, Elements. he begins with the construetion of an equilatersi triangle and concludes With the five solids. The last proposition in Elements is that no other solids with congruent ragular polygons as faces pre possible, and he proceeds to give proof for this prapasition.

Johannes Képler, an astronomer and mathomaticien in the late 16th Century, did further atney of the platonio solide. He assumed. based on Plato'm Dimesus, that since the tetrahedron had the smallest volwa for its urface it should ropresent dryness and the loosahedron which he believed (incorrectly) to enclose the laxgest volume, represented wetness, because the volume-surfaces relation is Elso quality of dryness and wetness. Tharefore, fire being the driest. it was the tetrahedron, and water, being the wettest, it was the icomahedron. The cube was assooiated with the earth beeruse of its stablilty and the ootanedron was associated with air beaues held at two oppesite vertioer, it apins freely and therefore has the inftability of air. The dodecshedron was associated with the universe because it has twelve faces and the zodiac has twelve signs.

Kepler even went further to say that the five solids accounted for the number of planets (fite wore know at the time) and their spacing arount the sun. In his vizterium Cosmomanhicup of 1596. he says:
"The orbit of the Earth is a circle: round the sphere to which this circle belongs, describe dodooshedron: the sphere ineluding this will give the orbit of Mers. Round Mers deseribe a tetrahedron the circle including this will be the orvit of Jupiter. Describe cirole areound Jupiteres orbil, the circle including this will be the orbie of Saturn. Now inseribe in the earth's orbit an feoshedron the circle inseribed in it will be the orbit of venus, the circle inseribed in it will be Murcury'a orbit. This is the reason of the number of plantta."

Kepler also was one of the first to etudy the small and great enellated dodecshedron. They are not convex solids, and therefore not elaselfied as the other 5 solide are, but they do have regular polygon faces. Louis Poinsott. Frenoh mathematician in
the late $18 t h$ Century, edded the two last regular polynedra, the great dodecshedron and the great icosahedron which also were not convex. This makes a total of 9 regular polyhedra. This still leaves the number of regular solide at five, since they are defined as being regular conyet polyhedra.

Luawig Schlaffi (1814-95), Swias methematician, originated the symbol used now for the regular polyhedra (p, q), where p is the number of sides and q is the number of polygon meeting at each ventrex. His thod of proving there are only five was this:
"Let (P, Q) be any regular polyhedra. The size (in degrees) of enon angl of the reguiar polygons forening its Late can be axpresised as $180-(360 / p)$. Since (p, q) 18 lenvex, the sum of the angles at one ventex is iess than 360. Therefore, we can set up the following inequality,

$$
(180-360 / p) q<360
$$

$$
180(1-2 / p) q<360
$$

$$
(p-2)(q-2) \leq 4
$$

p and g are both >2. If $p=3$, we can have from the inequality $(3,3),(3,4)$. $(3,5)$. If p me , we have (4,3), and if $p=5$, we have $(5,3)$. Since there is no allowale value for ${ }^{q}$ where $p>5$, there are no other regular polyhedra." ${ }^{2}$

In concluding, one point stands out from all the rest that has been said. Mathenatios an be interesting and onjoyable if you take the time to make it so. A little research and study can make it meaningful and worthwhile. But it is obolous that, like so many other things, teachers and studente alike get frof it what they put into it.
(1) Arithmetic Teacher, "Easy-to-Paste Solids", M. Stoessel Wehe, Oetober 1965. pp. 468-471.
(2) Historicel Ropics for the Mathematios Classroom. "Regular Polyhedra". NCw 31st year book, Daniel Klaasen, 1969. pp. 220-21.
(3) Mastorpieces of Worid Philosophy in Sunmary Foxim, "Tumaeus". eated by Frank N. Mazel1. pp. 125-131.
(4) Yathematios Tacher. "The Geonetry Capsule Concerning the Five Platonic Lolids. Howard Eves, January 1969. pp. 42-43.
(5) Methemticy Tamahor, "The Worid of Polyheara". March 1965, p9. $244=48$.
(6) Matheraties Teasher, "The History of the Dodeshedron". J.P. Phillipe, March 1965: pp. 248.250.

FOOTNOTES

The Mathamatics Teacher, "The Geometry Capsule Concerning the Five Platonio solia3". Qanuary 1969.

2Histocical Topies6for the Mathematies Clagsroom. NCTM Yearbook, $318 t$ edition, py. 220-21.

