Ouachita Baptist University
Scholarly Commons @ Ouachita

Radiation Problem

Gerald L. Fuller

Ouachita Baptist University

Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses
Part of the Analysis Commons

Recommended Citation

Fuller, Gerald L., "Radiation Problem" (1973). Honors Theses. 514.
https://scholarlycommons.obu.edu/honors_theses/514

This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Honors Theses by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact mortensona@obu.edu.

Radiation Problem

Given: A sphere of radius ' a ' which is radioactive and which has an average range ' b ' in the sphere. If, o<b<גa, what fraction of total radiation will escape the sphere.

I have decided to divide this into two parts. One, when $b<a$, the other when $b>a$.

The approach to the problem was, that the distance from the centers varied, and this was directly proportional to the radiation that escapes. The distance ' x ' was put in terms of ' θ '.

Fig.

Fig 2

The area outside the large sphere is: $S=2 \pi \mathrm{bh}$ The ' h ' we have to calculate by the triangle in fig.1. $\mathrm{h}=\mathrm{b}-\mathrm{b} \cos \theta=\mathrm{b}(1-\cos \theta)$

We plug this back into equation 1 and $S=2 \pi b^{2}(1-\cos \theta)$

By using the law of cosines we can put the distance ' x ' into terms of " θ '.'.
$-\cos \theta=\cos \left(180^{\circ}-\theta\right)=\left(b^{2}+x^{2}-a^{2}\right) / 2 b x$
Then:
$1-\cos \theta=\left(2 b x+b^{2}+x^{2}-a^{2}\right) / 2 b x$
Now the fraction that escape is; $F=2 \pi-b^{2} / 4 \pi-\frac{b}{2}\left(\frac{\left.2 b x+b^{2}+x^{2}-a^{2}\right)}{2 b x}\right.$

This is then integrated from ($a-b$) to (a). The totail fraction which escapes is:

$$
\begin{aligned}
\operatorname{Tf} 1= & 1 / 4 b \sum_{a-b}^{a}\left(2 b+x+\left(b^{2}-a^{2}\right) / x\right) d x \\
= & \left.1 / 4 b \sum_{a-b}^{a} 2 b x+x^{2} / 2+\left(b^{2}-a^{2}\right) \log x\right] \\
= & 1 / 4 b\left[\left(2 b a+a^{2} / 2+\left(b^{2}-a^{2}\right) \log a\right)-(2 b(a-b)+\right. \\
& \left.\left(a^{2}-2 a b+b^{2}\right)+\left(b^{2}-a^{2}\right) \log (a-b)\right] \\
= & 1 / 4 b\left[4 b a / 2+a^{2} / 2-4 b a / 2+2 b a / 2+4 b^{2} / 2-\right. \\
& \left.a^{2} / 2-b^{2} / 2+\left(b^{2}-a^{2}\right) \log (a /(a-b))\right] \\
= & 1 / 4 b\left[2 b a / 2+3 b^{2} / 2+\left(b^{2}-a^{2}\right) \log (a /(a-b))\right. \\
= & 1 / 4 b\left[b a+3 b^{2} / 2+\left(b^{2}-a^{2}\right) \log (a /(a-b))\right] \\
= & a / 4+3 b / 8+\left[\left(b^{2}-a^{2}\right) / 4 b\right] \log (a /(a-b))
\end{aligned}
$$

$$
\lim _{b \rightarrow 0} \operatorname{Tf} 1=a / 4+3 / 8(0)+(0-a) \log (a /(a-0))
$$

$$
\lim _{b \rightarrow 0} \operatorname{Tf} 1=a / 4+((0-a) / 0) \log (a /(a-0)
$$

Let:

$$
((0-a / 0) \log (a /(a-0)=z
$$

```
\(\operatorname{Lim} z=\operatorname{Lim} f(x) / F(x)\)
    \(\left.\left.=\operatorname{Lim}_{x \rightarrow 0} f^{\prime}(x) / F^{\prime}\right\} x\right)\)
```


Therefore:

```
Lim}z=b/4 log (a/(a-b))-a/4 ( log((a/(a-b)/b
```

$$
\begin{aligned}
\operatorname{Lim}_{b \rightarrow 0} z & =(0) \log (a /(a-b))-a^{2} / 4(\log ((a-b) / a) / b) \\
& =-a^{2} / 4\left(\operatorname{Lim}_{b \rightarrow 0}(a /(a-b))(1 / a)\right. \\
& =-a^{2} / 4(1 / a)=-a / 4
\end{aligned}
$$

Therefore:

$$
\operatorname{Lim}_{b \rightarrow 0} z=-a / 4
$$

And:

$$
\operatorname{Lim}_{b \rightarrow 0} \operatorname{Tf} 1=a / 4-a / 4=0
$$

Now I consider the situation when $b>a_{\text {a }}$

Fig 6

The radiation outside the sphere with radius ' a ' is: $S=2 \pi \mathrm{bh}$

The ' h ' we have to calculate by the triangle: in fig. 4. $\mathrm{h}=\mathrm{b}+\mathrm{b} \cos \theta=\mathrm{b}(1+\cos \theta)$

We plug this into equation 2 and
$S=2 \pi b(1+\cos \theta)$
By using the relationship of the sides and angle of an obtuse triangle, we obtain ' x ' in terms of ' θ ' . $\cos \theta=\left(b^{2}+x^{2}-a^{2}\right) / 2 b x$

Then:
$1+\cos \theta=\left(2 b x+b^{2}+x^{2}-a\right)^{2} / 2 b x$
Now the fraction that escapes is :
$F=S /\left(4 \pi b^{2}\right)$
$F=2 \pi b / 4 \pi b^{2}\left(\left(2 b x+b^{2}+x^{2}-a^{2}\right) / 2 b x\right)$
In the second part we have to consider the instance when the radiation range 'b' is given off from the center. This means there will be a shell of radiation given off outside the radius 'a'. To add this we integrate 1 from 0 to $b-a$, and add this to our full integral ' Tf2 '.
$T f 2=\int_{0}^{b-a} 1 d x+1 / 4 b \int_{b-a}^{a}\left(2 b+x+\left(b^{2}-a^{2}\right) / x\right) d x$
$\operatorname{Tf} 2=\left[\begin{array}{l}b-a \\ 0\end{array}\right]+1 / 4 b \sum_{b-a}^{a}\left[4 b x / 2+x^{3} 2+\left(b^{2}-a^{2}\right) \log x\right]$
$T f 2=b-a+1 / 4 b\left[5 a b-5 b^{2} / 2+\left(b^{2}-a^{2}\right) \log (a /(b-a))\right]$
$T f 2=b-a+5 a / 4-5 b / 8+\left(\left(b^{2}-a^{2}\right) / 4 b\right) \log (a /(b-a)$
Now we set Tf1 = Tf2 taking the limit of both as bapbroaches a.

$$
\operatorname{Lim}_{b \rightarrow a} \operatorname{Tf} 1=\operatorname{Lim}_{b \rightarrow a} \operatorname{Tf} 2
$$

$$
\begin{aligned}
\operatorname{Lim}_{b \rightarrow a} \operatorname{Tf} 1 & =a / 4+3 a / 8+(a-a) / 4 a \log (a /(a-a)) \\
& =2 a / 8+3 a / 8 \\
& =5 a / 8
\end{aligned}
$$

$\operatorname{Lim} \operatorname{Tf2}=a-a+5 a / 4-5 a / 8+(a-a) / 4 a \log (a /(a-a))$ b

$$
\begin{aligned}
& =10 a / 8-5 a / 8 \\
& =5 a / 8
\end{aligned}
$$

Now comparing we the resuits of taking the limits of Tf1 and Tf2:

Since both our answers have an a in them we will divide both of them through by a.

Thus:

$$
5 / 8=5 / 8
$$

Our final check will be to tak e the limit of Tf2 letting b approach $2 a$. This would let all the radiation out, and the equation should approach 1. As before we will have to divide through by a.
$\operatorname{Lim}_{b \operatorname{Tf} 2} \operatorname{Ta}-2 a+5 a / 4-5(2 a) / 8+(4 a-a) / 8 a \log (a /(2 a-a))$

$$
=a+10 a / 8-10 a / 8+0
$$

$$
=a
$$

Now dividing by a:

$$
=1
$$

According to the mean value theorem, when integrating
lets say, from 0 to a over a length, you have to divide your answer by 'a'. In a s\&nce this is just what we have done. Therefore, this is our reasoning for doing this operation.

The End

