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GROUPS 

1. Abstract Groups 

In the study of modern algebra. it is convenient to 

introduce the abstract concept of a group, G, with one 

bina.ry operation indicated as multiplication. ' By defini-

tion, a. group G is a system of elements which is closed 

under a single-valued binary operation which is associa-

tive, contains an element satisfying the ·identity law, and 

with eeeh element another element ( called its inverse) 

satisfying the inverse law. In product notation, with 
·"' .. 

"e" for the identity, the three laws defining . groups are 
., . 

ASSOCIATIVE LAW: a(be) = (ab)c for . all a, b, c; 

IDENT1mY LAW: ae = ea. = a for all a; 

"INVERSE LAW: aa-1 =a-la= e for eacha and some a-1. 

The positive real numbers form a gr~~p , und~r mult1-

plicati~~· Associative: a(bc) = (ab)c; Identity: a x 1 = 

1 X a = a, where e = 1; Inverse: a X 1/a = 1/a X a = 1. 

However, they do not form a group under addition. (Tbe~ 

starred laws are the ones which are not satisfied.) 

Associative: (a+ b) + c =a+ (b +c); *Identity: a+ 0 = 

0 + a = a, but 0 is not a positive real number; *Inverse: 
. .• 1 

a + (-a) = (-a) + a = 0, but the inverse is always a negative 

number. 

In the field z11 of integers modulo 11, the set of 

numbers (1, 3, 4, 5, 9) is a group under multiplication. 



Tb.e a.ssociati v~ law holds, 

the ident1ty.1s 1, and the 

inverses are: 1-l = 1, 3-l = 
. , . 

4, 4-1 = 3, s-1 = 9, 9-1 = s. 
Tb~ .. ,s~t of irrational numbers under mul t1pl1ca.tion 1s 

~"'-"':• 

not ia group .~ ' It is not closed: ~ x U,.J'a2 x ••• x ~ = 
t :: . . 

a a.nd. the identity eloement is 1, but is not contaifted in 

the set .• 

The follGwing Cayley .. ·squa'J:re describes a group. For 

ev~ry element the associative property holds, the identity 

element is c, and the inverses are: a.-1 = d, · c-1 = c, 

b-t = b, d-1 = a. 
I a b J)_ . d 

a b d . a c 
b d e b a · 
C ' ;! a b e d ' 
d c a d b · 

All inte·gers .Jinci~r the operation of subtracti-on do not 

form a gr0.\1-P• *As&&e1at1ve: a-.(b - c) ~ (a - b) - o; 
' . 

Identity: a - 0 = a; Inverse: a -a= o. 
·- ... 

. :-: 

2-. Symmetries 

The algebra of' symmetries has 1ts .genes1s in the f'aet 
~.. '' 

that two motions can be "multiplied!'by performing them in 
f· 

succession • . A symmetry of a geometrical figure is a one·-
.. -. ' ~ 

one transformation of its points which preserves dis.tance. 

In th~. ease of the symmetries of the square, anY, symmetry 

mu~1; ca:t'ry the vertex 1 into one of the four possible 

vertices and for each suc-ll choice there are exactly two 
. ' 

symme-tries • Thus all t.o,e·ther there are eight symmetri·es. 
,...,. -- ' .t,. 
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R~ a 9ifrotat1on clockwise around the origin 

R', R'' : similar rotations through 180° amf Z7fl 

These three are rote.tional symmetry: The square also has 
• •l. 

3 

ref'exi -y-e symmetry, it .. ean be carried into itself by the 

following rigid reflection-s 1 H: a reflection in the horizon-
:.1 .: 

tal axis through the o~gin1 V: a reflection in the vertical 
": ~. ': ·. ·: .. ~.. . " 

axis through the origin; 0: a reflection in· the diagonal in 
,• .. 

quadra~t~ I and III; D': a reflection in the diagonal in 
:· . \ ... i 

quadrants II and IV. The so-called identity motion I is 
~ • i - ~ I 

con~idered a (degenerate) symmetry, in order to be able to 
'\ t ... 

multiply a~l pairs of symmetrt·es. , 
I 1 

It can be shown that this set 

of symmetries comprises a group, 
·-1 .'(. 

'' " I / ,. 
' I / 

' / 
' I 
' / 

.'\. . . I / 

' / kn~~n as the group of the symmetries ,I/ 
- -----)k-----

. /I"-of the square. This group is non-

abelian. By use of the CAyley 

square the complete multiplication 

table of the group may be sho.wn. 

I R 

I I R 

R 

B' 

R' 

H H 

v v D H D' 

D Il H D' 

~ / ' 
/ I ' 

/ ,. ' 
. " / .. I ' 

v/ , ' ,. 

... 

t 

D 
/ 

"" ' D' 



Most of the group properties can be read directly 

from the t8ble. The existence of an identity states 

th~t some row and the corresponding column must be replicas 

of the top heading and of the left he,..ding respectively. 

The group is commutative if and only if its table is sym­

metric about the principle diagonal (which extends from 

upper ieft to lower right). 

In the same manner, the symmetries of an equilateral 

trigngle may be computed. 

I 

R . 

R' . 

v 

b 

v 

'-·· 

R: a 120°rotat1on clockwise ar6und center o •. 

R': a similar rotation through 240~ 

V: a r~f1.ect1on in the verti~cal axis through 0. 

D: a ·reflecti'on in the .: diagonal going through J. 

n·~ ~ a reflection in the diagonal going through 2. 

I R R' v D D' 

I -R R' v D 11 

a~~R ·· I I1 v D 
,. 

R,.. .. T . R · n r:J v 
. -~ 

v ""D n• I R · R' , 
.. ......... 
D I1 v R I R 

., 

rJ v D R R I 

Groups of Transform4t1ons 

The algebra of syMmetry can be extended to on~-one 

~tra,nsformations of any set S of elements. It is often 
,, 

suggestive to think of the setS as a "space" and of . its 

' 
\ 
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elements as ~points", but the rules of calculation are the 

same no matter whet S is. By the transformation ¢: 8-+ T 

from a (nonempty) set S into a set T is meant a rule ~ 

' which .assigns to each element p E S a unique image element 

.5 

p~ in T. The set S is called the domain of ¢ , and T its 

codomain.. The product or composite ¢¢: of two transformations 

1s defined as the result of performing the.m in succession; 

first ¢, then~. provided the codomain of ¢ is the domain 

of . ~. 

By a "group of transformation" on· a "space" Sis meant 

e.ny set G of one-one transformeti:ons' ;$ of S onto S such that 

{1) the identity transformation of S is in G; 

(2) if ¢ is in G, so is its inverse ~-1; · 

(~) if ¢ and ¢: are in G, so is their product ¢~ .• 

If S consists of all real numbers and the tra.nsformations 

to be considered have the form x¢ = ax * b, in the follo~ing 

cases ~orne of the sets of all possible ¢•s with coefficients 

a end b e.re groups of transformations, while others are not. 

(a ), If a and bare rational numbers, a group of 

transform.attons is formed ·. ' . · . · • 

t • 

x- = ax * b 

x~-1 = x - b a 

(x¢-1)¢ = a(X 

• -'-1-' - I •• JU 'P - • 

and x~ ~ aix + b1 

~Ip~~r,s~) 

- b) + b ~ X - b + b = X a 

(I den t .i tyJ 

(x¢)~ = a1 (ax +.b)+ b1 ~ a1ax + a1b + b1 (Closure) 

••• ¢~ is in the set defined. 

Since all three stipulations of a group of transformations 

are met, it is a group. 



(b). If a= 1, b is an odd integer, a group of 

transformations is not formed. 

xJ = x + (2n + 1) 

x~-1 = x - (2n + 1) (Inverse} 

(xp-1)~ = x- (2n + 1) + 2n + 1 .= x + 0 • 

• ·.~~1~ =I. (Identity) 

However~ b ih this c~se _ is 0, which is not an odd integer. 

6 

(o). If a¥ 0, a is an integer, b is a real number, then 

a groupof transformations is formed. 

4. 

',-

x~ = a1x +...fi5J. 
x~-l = X atni (Inverse) 

( x.~-1)~ = al(X a:Sl) +1'bl =X -1bi +ibl ·= Xe 

··~¢-1~ = I (Identity) 

If _ x~ ~ a 2x +11b2, then x¢~ = a1 (a2x +1b2 ) +ibi 
= a1a 2x + a~ +~1 (Closure). 

Isomorphism 

The concept of isomorphism is valuable because it 

gives form ~o the recognition that the same abstract group 
.. . • . ' • t 

situ~tion can arise in entirely different c9ntexts. By an 
,. ~ . 

isomorphism between two groups G and G' is meant a one-one . -

correspondence a ...., a• between their elements which preserves 
... :, ~ -

gro'(ip multiplication -- i.e., which is such that if a~ a• 

an~ b ~ b'. then ab ~ a'b' • . a• ·is called the _imag·e of a. 

The fa6t _ that isomorphic groups are abstractly the same can 

be seen in a number of examples. 

Let G = mul t1plicat1 ve gr0;up on the fourth roots o_f 



unity, and let G' = additive group of the residue classes 

modulo four whose elements are 0, 1, 2, 3. 

G G' 
1~ 0 
1 ~ 1 

-1 ~ 2 

G G' 
1 +-t 0 
1 ~3 
-1~ 2 

The group tables 

reveal the isomor-

7 

-1 ~- 3 -1 ...... 1 phisms of these group~. 

' ' · 

~Xj 1 ''·. t • -1 - -1 + 
....... ~ .. 

1 1 1 .1 
. 

-1 0 . 

i t _ .. , ..:1 .. ---"1 1 

-J..~ -1 -1 1 i 
-. .. 

-1 ~1 1 1 -1 1 1 0 2 

From these tables, the theorem that the identity elements 
..... ;..., -~ ... . .·. .,; 

correspond and the inverses of corresponding elements 

correspond can be seen. 

The group of rotations of a sq~are and the multiplicative 

group of L, · 5, 8, 12 mod lJ '-re 1.-,:Jomorphic •-- .. 

a• 

X · 1 · X I R R::!' R' 

1 1 . I --' ~I_ R R• .R' ,, . 
R- R R-' ' I .. Ril' ' 

R" R" I R' R -

Ri R' g• · R. I 
... '~ ..... 

; .... 

An 1s-omorpl:lism exists between th group of '"the square 
... 

and a grO\lP of permvta t1ons of the f~"\lr vertices 1, 2, 3, 4 
A 

of the square. Th$ group table of the permutations, when 

compe.red with that of the :g:t'ou.p of the square, is isomor-

phic to it. '. 
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I I = e H - (14)(23) = d 

R {1234) = a v (12)(34) = f 
R' (1J)( 24) = b D (24) = g 

R" (1432) = c D'- ( 13) =h . 

e a b c d 

5. Cyclic Groups 

A group, G, is cyclic if it contains some one element. 

x whose powers exhaust G; this element is sa.id to generate 

the group. The order of an element a. in a. group is the least 

positive integer m such that a.m = e; if no positive power of 

a. equals the identity, a has order infinity. 

The order of every element in the group of the square is 

either 4 or 2: 

R-- order 4 

R' - order 2 

R'' - order 4 

H - order 2 

V - order 2 

D - order 2 

D' order 2 
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The multiplicative group of 1, 2, 3, 4, 5, 6 mod 7 is 

cyclic, although not all of the elements generate the group. 

The smallest element whose powers exhaust the group is 3. 

The other element which generates the group is 5. 

The elements generated by two elements x and y subject 

to the defining rel:a,tions x 2 = y3 = e and xy = yx are 

2 2 x, y, y • xy, xy • The multiplication table is 

<c e X 

.e e X 

X X e X 
·2 

e X -2 ~.- ·:t 
-

x .. :. X 

2 e 

a X X e 

'<'··· 

6. Subgroups 

Many groups are conta1n~d " in larger groups. A subset 

S of a group is ca.lled a. subgroup of G if ~ is itself a 

group with respect to the binary operation of G. In any 

group G, the set consisting of the identity e alone is a 
. '?- • 

subgroup. c. ''Tb.e:,'w.hole group G 1s also a subgroup of 1 tself. 

Subgroups of G other than the trivial (improper) subgroups 



e and G are proper subgroups. 

The additive group mod 12 contain~ · slx subgroups; 

(1) The improper subgroup e , ·o, (2) the improper subgroup 

of itself. 

( 3) (4) 
-

+ 0 2 4 6 8 10 

0 0 2 4 6 8 10 

2 2 4 6 8 10 0 

4 4 6 8 10 0 ? 

6 6 8 10 0 · 2 .4 

8 8 10 0 2 4 6 

10 10 0 2 4 6 8 

<5L...--__ _ 

Among the subgroups of a given non-Abelian group G, 

one of the most important is its center. This is defined 

10 

a s the set of all elements a E G, such that ax = xa for all 

x E G. I n the group of the square, by checking the group 

t abl e , the s ubgroup (I, R') is found to be the center of 

the group . In the group of the equilateral triangle, the 

center is .s i mply the improper subgroup (I). 

' . . 
7. Cosets 

A fa.r -reaching concept of a bs t r act group theory ·, is the 

idea that any subgroup S of a group G decomposes G into oosets. 
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A right coset (left coset) of a subgroup S of a group G 

is any "set Sa (or aS) of all the right-multiples sa (left­

multiples as) of the elements s of S by a fixed element a 

in G. If S is finite, each Tight coset Sa of S has exactly 

as many elements as S does. 

The right cosets of the subgroup S = fJ 1) (2) (3 f (4), (13 il 
of th~ group composed of (1)(2)13)(4) "= 1, (1234) =a, 

(13)(24) = b, (1432) = c, (13) = d, (24) = e, 112)(34) = f, 

(14)(32) = g are 

Si = Sd = (13) 

Sa = Sg = (1234). (14)(32) 

Sb = Se = (13)(24), (24) 

Sc = Sf = (1432), (12)(34). 

The left cosets are 

iS = dS = (13) 

aS = fS = (1234)' (12) (34) 

bS = eS = ( 13 )( 24). (24) 

cS = gS = (1432), ~(,14 ) ( 3 2 ) • 

• •• • • - ... 0 ~.. • ; / • • .-- :; 

8. Permutation ~roups 

A group of permutations on .a finite set of elements 

illustrates the theory of groups well. A permutation is a 

one-one transformation of a finite set into itself. It is 

customary to describe a permutation by actually designating 

the image of each element under the mapping in a "two-row" 

notation or by a "one-row" notation for cyclic permutations 

1n which any letter is foll.o.wed by,.; its transform and the last 

l~tter is transformed into the first. The permutat~~n~~i ts 
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1- = 2, 2~ = 3, 3~ = 4, 4~ = 5, 5~ = 1 and can b.e written 

~ ,{r:j f.~ :. ~~~~) or as (12345), . (23451), (34512), (45123), 

( 51234 ). ; The notation of a cyclic permutati~n can be 

extended ,to any .permutat1on: any permutation~ can be .. 
written as a prod.ct of cycles, acting on disjoint sets of 

symbols. If )I( is l)i = 3, 3)1( = 2, .. 2}4 = 1 ·, 4)1( = 5, 5)1( = 4, 
·' 

then}/. is the product of two cycles . (132)(45). Aiso, the 

order of any permutaion ~ is the least common multiple of the 

len~ths of its disjoint cycles. To find the order ~·of 
•• -:I ' 

(e.bcdef)(a-bcd)(abc), the product of_ the three cycles which 
"·. . 

a.re not disjoint must be found. It .becomes (bdefc), so the 

order is 5 •- . In the permutation (abcdef) (ghi) (klm), there are 

t,hree dis joint cycles with the least common·· multiple of the 

lengths of the disjoint cycles as 12, so the order is 12 • 

. The group of the symmetries of the equilateral triangle 
.,.. r.·.• 

can be expressed in terms of permutations and cycles if 

1, 2, 3, represent its vertices. ' . -

I= (1)(2)(3) · 

R~ ( 23) 

R' = (123) 

v = (13) 

D = (132) 

n•= -(12). 

!!'he group of the square may be expressed in .a>stinUa.r· manner 

as a. permuatation of the 4 vertices. 

9. ;- Homomp!rf>bdsm 

A singled-valued transformation from a group G to a 

group .G 1 }1h! en::~J1)res:erve$-;:fu.il~t1p·l!'.tci:lt! oil!' butt iS ~' fiOt;'i' f\l!ce~sarily 

one-one is a homomorphism. Under ·any ho~omorphism G-+ G', the 

identit~ e of G goes into the , identity G1 , and inverses into 

inverses. The set of all elements of G mapped on th§ identity 
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e' of G·'<, under a homomorphism of G to G', is a suiQgroup of 

G and is known as the kernel. 

In . the illomomorp}lti-sm n --). in • where i ='V'='f and n E z, t .he. 
,, ~~ .. 

kernel is all n which are multiples of four • . 

In a square let the two diagonals bed and d', th~ axes 

h·:and v~ There is a homorphism $d +-+··¢* in · whi.eh each motion 

¢ in the group of the square induces a permutatton ¢* on 

h, and v. 

R...., (dd')(hv) v ..... (dd.) 
J, 

" I '\ / 
R' ._, I D~ .(hv) "-I/ ' 

! - -A--__, I ' .\, . ;· 
_ , 

R •· ' . ~ ( dd ' ) ( hv ) D' ~ (hvr· ·. / I'\._ ,, 
/ '\. 

(dd.) 
/ I '\,. 

H~ I~ I / 

" "' In this homomorphism the kernel is (I, R') • v 
I ' . / 

h .. 

d' 

The group of the regular hexagon ··obtained by six rotations 
.. . . . 

and six re~lections represented by s0 , s1 • 82••••• s11 isA 

homomotphte to a set of reflections 

R0 , R1 ~ R2 throu~h AO., BE, CF, 

respectively. 

There are.- si:x ' two ... one ~orresp:o.na.ences •. · c .. 

66· 83 ~ (1) sl, s4 ~ (RoR1R~) 

s2.' 86 ~ (RoR2Rl) 86• 811 ~ (RoR1 ) 

87, 810 ~ (RlR2) sa. 89 .._. (RoR2) 

The kernel is <so. 83). 

10. Autom·orphisms 

An isomorphism of a system S with a system s• is sai,d 

to be an automorphism if 8 and 8' are the same syst~m. An 

automorphism c~n~ :Qe thought of as a shuffline; of t-he elements 



of a sy~~~m but with the operations and relations in the 

system remaining unaltered. 

The multiplicative group made up ot a, - b~ ab, and the 

identity e has the group table 

shown and Ls_ automorphic: 

e -~ e (=a2 = b2) 

a~b 

b.._, a 

ab ~ ba 

X 

e 

a 

b 

. ab 

e 

e 
... 
a 

b 

ab 

a b ab 

a b ab 
- .. 

ab b _.e 

ab e a 

b a Jt 

The group G composed of (1), (12), :(f).)' , · (23), (123), 

and (132) has the.-,,gJl9U·p table 

An automorphism of G e~ists when 

-~1) ' ~· (1) 

(12) ~ (13) 

(1J) -~ (12) 

(23) ~ (23) 

(123)~ . (132) 

(132) ""-+ (123). 

The group tables are abstractly the same. 
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