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GROUPS

1., Abstract Groups

In the study of modern algebra it is convenient to
introduce the abstract concept of a group, G, with one
binary operation indicated as multiplication. By defini-
tion, a group G is a system of elements which is closed
under a single-valued binary operation which is associa-
tive, contains an element satisfying the ldentity law, and
with esch element another element ( called its inverse)
satisfying the inverse law. In product notgtion. with
et for the identity, the three laws defining groups are

ABSOCIATIVE LAW: a(bec) = (ab)c for all a, b, c;

IDENTITY LAW: ae = ea = a for all sa;

INVERSE LAW: aa-l = a-la = e for each a and some a-1,

‘ The positive real numbers form a group-under multi-

plication. Associative: a(bec) = (ablec; Identity: a x 1 =
lxa-= a,'where e = 1; Inverse: a x 1/a = 1/a X a=1.
However, they do not form a groﬁp under addltion. (The-
starred laws are the ones which are not safisfied.)
Associative: (a + b) + ¢c = a + (b + ¢); *Identity: a + 0 =
0+ a =24, but 0 1s not a positive real number; *Inverse:
a+ (-a) = (~a) + a = 0, but the inverse 1s‘a1ways a negative
number, |

In the field le of integers modulo 11, the set of

numbers (1, 3, 4, 5, 9) is a group under multiplication.



XMW1 3 4 5 9 The associative law holds,
(1 Il 3 4 5 9

3 1 9 1 4 5 the identity.is 1, and the
ENi IR 3

s I 4 o 3 1 inverses are: 1-1 = 1, 3-1 =
o9 5 3 1 L, o

b, 4=t =3, 571 =9, 9-1 = 5,

Thewset of irrational numbers under mulfipllcation is
not ‘a group. It is not closed: ByE{x W83 x ...x L& =
a énd the identity element is 1, but is not cohtained in
the set,

The follewing Cayley square describes a group. For
every element the assoclative property holds, the identity
elément is ¢, and the inverses are: a~l = d,-c"1 = ¢,

-l = b, a-1 = a.

la b ¢ d ,
aflb d a ¢
bifd ¢ b a
clia b ¢ d-
dlile a 4 D

All 1ntegers>ﬁndér the operation of subtraction do not
form a group. *Assoclestive: a-{b - ¢) # (a - b) - o;

Identity: 2 - 0 = a; Inverse: a -a = 0,

2+ Symmetries | |

Thé algebra of symmetries has its genesis in:the fact
that two motions can be "multiplied" by perfofming them in
succeséion. A symmetry of a geometrical figure is a one-
one tréﬁsformation of its points which presér&es distance.
In the case of the symmetries of the square, any symmetry
must carry the vertex 1 into one of the four possible
vertices and for each such choice there are exacily two

symmetries. Thus all together there are eight symmetries.,



R: 2 90° rotation clockwise sround the origin
R', R'': similsr rotstions through 180° am@ 270’
These three are rotetional symmetry. The square also has
refexive symmetry; it can be carried into ltself by the
following rigid reflectionsi H: a reflection in the horizon-
tsl axis through the origing V: a reflection in the vertical
axls through the origin; D: a reflection 1nﬂthe diagonal in
guadrants I and III; D': a reflectioh in the diagonal in
quadranﬁs IT and IV. The so-called identity motion I is

concsidered a (degenerate) symmetry, in order to be able to

multiply‘all pairs of symmetries, N2 f 1/9
It can be shown that this set \\\\ ' % /,//
of symmettries comprises a group, \\. } /’/
knoﬁn es the group of the symmetries \\\'// "
of the square, This group is non- N ~__-~:;;)T\::—_«—-—.—
abelian., By use of the Cayley /// : \\\
square the complete multiplication //' | \\\
table of the group may be shown, -3 J u:S'
]
II B R RMH V D_D'
I I R R B'H v D D
R llBR RR'I D D'V ¥
R'UR' H'I R V H D'D
R'YUR*' I B R'D'D H V¥
| _H [lH D'V D I R' B"R
VIV b H D'R'I R B
D D H D'V R R'I R
D! iﬁ' VD H H*'R R'I




Most of the group properties can be read directly
from the t=ble, The existence of an identity states
that some row and the corregponding column must be replicas
of the top hesding =nd of the left he-~ding reépectively.
The'group is commutative if and only if its table is sym-~
metric about the principle diagonal (which extends from
upper left to lower right).

In the same meanner, the symmetries of an equilateral
triangle may be computed,

R: a 120°rotation clockwise around center O,

R': 2 similar rotation through 240°

V: a reflection in the vertical axis through O.

D: & reflection in the diagonal going through 3.

D*: a reflection in the diagonal going through 2.

I R RV D D
I|lIT R RV D I
RI/R BRI D V D |
RIIR I B D D V
vlijv p p* I R R
DD DV R I R
Dl v o R B I

3, Groups of Transformations
The 2lgebra of symmetry can be extended to one-one
.transformations of any set S of elements., 1t 1s often

suggestive to think of the set S as a "space" and of its



elements =s "points", but the rules of calculation are the
ssme no metter whet S is. By the transformation g: S— T
from a (nonempty) set S into a set T is meant a rule ¢4

which assigns to each element p E S a unique image element

pd 1n‘T. The set S is called the domain of g , and T its
codomaim The product or composite g of two transformations
is defined as the result of performing them in succession:
first ¢, then 4, provided the codbmaln of 4 is the domain

of A.

By 2 "group of transformation" on a "space" S 1s meant
any set G of one-one transformations g of S onto 8 such that

(1) the identity transformation of S is in G; |

(2) if £ is in G, so is its inverse g-1;

(3) Af 4 and 4 are in G, so is thelr product #x.

If S consists of 211 real numbers and the trensformations
to be considered have the form xg§ = ax + b, in the folloring
cases some of the sets of all possible g's with coefficlients
a and b are groups of transformations, while others are not.

(n). If a and b are rational numbers, a group of
transformations 1s formed. - .

¥ = ax + b and xf = 2,x + by

xg~l = X = b (Inverse)

(x6-1)g = a(25-2) + b=x - b+ b=x
sf-14 = I. (Identity)
(xg)df = al(ax + b) * by = a;ax + a;b + b; (Closure)
<.84 1s in the set defined.
Since all three stipulations of a group of transformations

are met, it is a group.



(b). If a =1, b is an odd integer, a group of
transformations is not formed.

x4 = x + (2n + 1)

xg~1 = x = (2n + 1) (Inverse)

(xf=1)f = x - (2n + 1) + 2n + 1 = x + 0.

~p-1g = I. (Identity)
However, b in this cese is 0, which is not an odd 1nteger.

(c) If a # 0, a 1s an integer, b is a real number, then
" a group of transformations is formed.
x¢A; aqx +43i |
xg~! = E_gfﬁi

(Inverse)
(xg=1)g = aq (2512 ) +45) = x -6y +4gi -
eflg = 1 (Identity)

If x4 = a,x +4~ then xgy

al(azx +VEé) +V51

aqa,x + aiﬁé +Vﬂi (Closure).

4, Isomorphism

The‘concept’of isomorphism is valuable because it
gives form to the recognition that the same abstréct group
sltustion can arise in entirely different contexts. By an
1somornhism between two groups G and G' is meant a one-one
correSpondence 8 «» 2' between their elements which preserves
groiip multlpllcatlon -~ 1.,e., which is such that if a2 ¢=» a'
snd b ¢4 b', then ab ¢« a'd’, a' is called the image of a,
The fact that isomorphic groups are abstractly the same can
be seen in a number of examples.

Let G = multiplicative group on the fourth roots of






I - I =¢ H —— (14)(23)

= d
R e (1234) = 2 V — (12)(34) = f
R' — (13)(24) = D D — (24) = g
R® — (1432) = ¢ D' — (13) =h
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5. Cyclic Groups

A group, G, is cyclic if it contsins some one element
X whose powers exhaust G; thls element is said to generate
the group. The order of an element a in a group ig the least
positive integer m such that a® = e; 1f no positive power of
a equals the identity, a has order 1ﬁf1n1ty.

The order of every element in the group of the square is

either 4 or 2:

R - order 4 V - order 2
R' - order 2 - D - order 2
R'' . order 4 D' order 2

H ~ order 2



The multiplicative group of 1, 2, 3, 4, 5, 6 mod 7 is

cyclic, although not all of the elements generate the group.

The smallest element whose powers exhaust the group is 3.

31 =3 37 =6 35 =5
32 = 2 3% = 36 =1,
The §ther element which generates the group is 5,
st =5 53 = 6 55 = 3
52 = 4 s = 2 56 = 1.

The elements generated by two elements x and y subject

to the defining relstions x2 = y3 = e and Xy = yX are

X, ¥, ¥2, %y, xy2.

The multiplication table is

e X vy y2 xy xy2

e x vy v2 xy xy°

X e xy x? y v2

Yy _xy  y2 e xy® x|
y2 __xy? e vy X. xy
vy x@  x y2 e
xy2 ¥y  x xy e y

6. Subgroups

Many groups are contained in larger groups. A subset

S of a group is called o subgroup of G 1f & is itself a

group wlth'respect to the binary operation of G, In any

- group G, the set consisting of the identity e alone is a

subgroup,. The whole group G is also a subgroup of 1itself.

Subgroups of G other than the trivial (improper) subgroups
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e and G are proper subgroups.
The additive group mod 12 contains six subgroups;

(1) The improper subgroup e, 0, (2) the improper subgroup

of itself.
(3) (&)
+10 2 4 6 8 10 " +lo 3 9 6
ojlo 2 4 6 8 10 oo 3 9 6
2l 2 4 6 8 10 O 3“ 3 6 0 9
il h 6 8 10 O 2 ol 9 0 6 13
6 |6 8 10 0 2 4 ¢l 6 9 3 o
8810 0 2 4 6 (6) |
m 10 0 2 4 6 8 ' +o o 8
(5) olo 4 8
+} 0 6 Ll 8 0O
ol o 6 glls o u
61 6 0O

Among the subgroups of a given non-Abelian group G,
one of the most important is its center. This 1is defined
a8 the set of all elements a E G, such that sx = xa for all
.x E G. In the group of the square, by checking the group
table, the subgroup (I, R') is found to be the center of
the group. In the group of the equilateral triangle, the

center is simply the improper subgroup (I),

7., Cosets
A far-resching concept of abstract group theory is the

idea that any subgroup S of a group G decomposes G into ocosets,
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A right coset (left coset) of a subgroup S of a group G
is any set Sa (or aS) of all the right-multiples sa (left-
multiples as) of the elements s of S by a fixed element a
in G. If 8 is finite, each riéht coset Sa of S has exactly
as many elements as S does,
The right cosets of the subgroup S = [}1)(2)(31(4). (13i]

of the group composed of (1)(2)(3)(4) = 1, (1234) = é,
(13)(24) = b, (1432) = ¢, (13) =4, (24) = e, (12)(34) = T,
(14)(32) = g are

81 = 84 = (13) ,

Sa = 8g = (1234), (14)(32)

Sb = Se = (13)(24), (24)

Sc = 8¢ = (1432), (12)(34),
The left cosets are

18 = d8 = (13)

aS = 5 = (1234), (12)(34)
eS = (13)(24), (24)
eS = gs = (1432), (14)(32).

bS

8. Permutation Groups

| A group of permutations on a finite set of elements
iliustrates the theory of groupé well, A permutation is a
one-one transformation of a finite set into itself. It is
customary to describe a permutation by actually designating
the image of each element under the mappiné in a "two-row"
notation or by a “one-row" notation for cyclic permutations
in which any letter is followed by its transform and the last

letter is transformed into the first. The permutation’g is
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1 = 2, 24 = 3, 3g =4, Ug =5, 54 = 1 and can be written
ag\}%fgfafgif) or as (12345), (23451), (34512), (45123),
(51234). The notation of a eyeclic permutation can be
extended to any permutation: any permutatioﬁ ﬂ can be
written as a prodhct of cycles, acting on dléjoint sets of
symbols. If M 1s 1 =3, 3 = 2, 24 = 1, b = 5, 54 = b,
then ¥ 1s the product of two'oyclesh(132)(45). Also, the
order of any permutaion ¢ is the least common multiple of the
leﬁgths of its disjoint cycles. To find the grder:of
(aEcdef)(abcd)(abc), the praduct of the threé‘c&cies which
are not disjoint must be found, It becomes (bdefc), so the
order is 5.. In the permutation (abedef)(ghi)(klm). there are
three disjoint cycles with the least common ﬁultlple of the
lengths of thé dis joint cycles as 12.'so the oréer is 12.

The group of the symmetries of the equilgteral triangle
can ﬁe expressed in terms of permutations and cycles if
l, 2, 3, represent its vertices.: _

I=(1)(2)(3) R' = (123) D = (132)

R=(23) vV = (13) D' = (12).
The group of the square may be expressed in aisimllar manner

a8 o permustation of the 4 vertices.

K 9.- Homomorphism

A singled-valued transformation from a group G to a
group G' which preserves mialtiplication but:is not hecessarily
one-one is a homomorphism. Under any homomorphism G- G!, the
identity e of G goes into the 1ldentity G', and inverses into

inverses. The set of all elements of G mapped on thé identity
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e' of G', under a homomorphism of G to G', is a subgroup of
G and 1s known as the kernel.

In the homomorphism n —» 1% where 1 =V?f'and n E z, the.
kernellis 21l n which are multiples of four;}

In a square let fhe two diagonals be d and d', the axes
h-and v. There is a homorphism # <« g* in which each motion

# in the group of the square induces 2 permutation g* on 4,4°',

h, and v, , v | d
, @Q\ 1 /
R e (dd')(nv) V «» (da') N } |
; N\ / ‘
R' & I D (hv) Ny :
- ~ ARSI G
R'! e (dd')(hv) D' «» (hv) 7 l\\ "
' ' | 7 & N\
H «s (da') l oI  d | N\
i ’ » k d'
v

In this homomorphism the kernel is (I, R'),
The group of the regular hexagon -obtained by six rotations

and six reflections represented by 80, Sl' So,e00, 311 iSA

homomorphic to a set of reflections

Ry, R

1 R2 through AR, BE, CF,

respectively. |

There are six two-one correspondences, . Lo _
8g» S5 &> (1) Sy. Sy <« (RoRyRy) 7 #D A
8,0 Sg > (RoRyR,) 8¢+ 811 «» (RoR)
Sny S10 > (RyR5) 8g, 89 «> (RoR,)

The kernel is (3p, S3).

10. Automorphisms
An isomorphism of a system S with a system S' is sald
to be an automorphism if S and 8' are the same system. An

automorphism can be thought of as a shuffling of the elements
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of a system but with the operations and relations in the
system remainihg unaltered,

The multiplicative group made up of a, b, ab, and the
1dentity;e has the group table

shown and is automorphic: a b_ab
e & e (=22 = p2) a__b_ab
2 e b e ab b
b & a ab e a
ab <« ba | ab b_ a___e

Thevgroup G composed of (1), (12), (13), (23), (123),

and (132) has the group table

(1) . (2) (13) (23) (123) (132)

(1) (1)  (12) (23) (23) (123) (132)
2y €12) (1) (123) (132) (13) _ (23)

N G (3 () G2 (23)  (2)

(23) “ (3) (23) (32) () (12) (3)
(123) l(23) (23) (12) (13) (132) (1)
(32) a32)  (3)  (23)  (a2) (1) (123

An automorphism of G exists when

(1) ¢y (1) (23) > (23)
(12) e (13) . - (123) = (132)
(13) e (12) (132) = (123),

The group tables are abstractly the same.
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