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BAYESIAN STATISTICS (THE FUNDAMENTAL THEOREM) 

The problem of the foundation of statistics is to state a set of 

principles which entail the validity of all correct statistical inference, 

and which do not imply that any fallacious inference is valid. This 

sentence describes the purpose of much writing on statistical inference, in 

general, and Bayesian statistics, in particular.1 Bayesian statistics was 

first introduced in a publication by Thomas Bayes in The London Philosophical 

Transactions, volumes 53 and 54 for the years 1763 and 1764, after Bayes' 

death in 1761.
2 

However, since the entire statistical research of Bayes' 

involves enormous study, this paper will limit itself to the development 

and application of Bayes' fundamental theorem. 

The starting point for a Bayesian analysis is the specification of a 

prior distribution for the unknown parameter. There is little argument 

about using a prior which is based on relative frequencies of past events. 

If one had records of the mean length of items produced each day by an 

industrial machine, most statisticians would agree that one should utilize 

this information in making an inference about the next day's production. 

However, disagreement arises when one supposedly has no information on which 

to base his prior. Now one must decide how to proceed. The answer is 

1Donald L. Meyer, "Bayesian Statistics, 11 Review of Educational 
Research, 36 (December, 1966), 503. . 

2Florian Cajori, A History of Mathematics (New York: The Macmillan 
Company, 1919), p. 230. 
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clear when it is recognized that a probability is a number a·ssociated with 

a degree of reasonable confidence and ?as no purpose except to give it a 

formal expression. If no information is relevant to the actual value of a 

parameter, the probability must be chosen so as to express the fact that 

no information is available. It must say nothing about the value of the 

parameter, except the bare fact that it may possibly be restricted to lie 

within certain definite limits. 

Another approach is to restrict the prior to a class of "natural 

conjugate Bayes densities" (NCBD). An NCBD is a distribution such that if 

it is used as a prior, then the posterior density from Baye 1 s theorem 

after observing a sample is another_ member of the same class. An example 

of an NCBD is the normal distribution for an unknown mean with known 

variance when the sample is from a normal distribution. If the prior for 
~ P is normal (m) V), and a sample from normal ~ 6) is observed, then the 

I I 
posterior distribution for .fl is also normal (m) V). The mean of the 

posterior distribution is a weighted average of the mean of the prior and 

the mean of the sample, where the weights are proportional to the reciprocals 

of the respective variances. •' n1 ) 

~~ = -(~xnr~---+~·--~--<0~ (~ + -& r , 
Suppose V = n1 , allowing only even fractional values of n . Choosing 

j. 
a prior variance is equivalent to choosing a "prior" sample size, n . The 

expression of indifference may simply be a question of determining some 

kind of base point on a scale of information accumulation. In the above 
j. 

example, if n ::. Ois selected, the prior variance is infinity, and since 

the normal distribution approaches the uniform distribution as the variance 

approaches infinity, the indifference prior would be uniform. The 



::L 
denominator of m is 

the notation is equal 

distribution is normal 

3 

also the reciprocal of the posterior variance and 
I I 

to (n + n ) ( 7/- ) . With N= 0 , the posterior 
6i 

< ~) rr). If a symmetrical posterior probability 

~ 
interval for ,1-L were constructed by adding and substitute 1. 96 n , 

then the Bayesian would say that his probability is 0.95 that ~ lies 

between the calculated limits. Of course, the 0.95 confidence interval 

turns out to be exactly the same interval. The difference is that the 

non-Bayesian is incorrect if he interprets this interval in the probability 

sense above. 3 

The posterior distribution of the unknown parameter is the goal of 

a Bayesian analysis. Once this is attained, posterior probability intervals 

can be constructed, means and variances reported, and hypotheses regarding 

values of the parameters can be assigned a posterior degree of belief by 

integrating over the relevant subspace of the parameters. Since the prior 

distribution adopted for a posterior probability could be almost any form, 

the task of catagoring posterior distribution depending on pries even for 

standard sampling and experimental designs is virtually impossible. 4 

Following the discussion or prior distributions and posterior 

distributions, must come the proof and statement of the fundamental theorem. 

However, much has been written concerning the theorem and it would be 

impossible to include all the discussions,so only three were chosen. At 

first it may seen the discussions are irrelevant but bear in mind that 

all theorems have information leading to -=:the , pr.oe.f . of : that theorem. 

3Meyer, op. cit., p. 507. 

4Ibid.' p. 508. 
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I. 

Let E denote a certain state or condition, which can appear under 

only one of the mutually exclusive complexes of c.auses: F, J }~ J ••• and not 

otherwise. Let the probability for the actual existence of If be J, , and if 

F t really exists then let w1 be the productive probability for bringing 

forth the observed event, E (E being of a different nature from F), which 

can only occur after the previous existence of one of the mutually exclusive 

complexes, F. Let, in the same manner, F~ have an existence probability 

of .){.:land a productive probabili ty of W~ , etc. If now, by actual obser-

vation, the event E has occurred exactly rn times in n trials, then the 

probability that the complex /~ was the origin of E 
a rn { )n-rn Q _ ...r<1 • t-U, I- w, 

1 - f. -f?c;~. . uJ o-."" (I _ wc:J..) n - rn 

Similarly that complex 0, was the origin: 

_ .Jp.. ~ (J _ w~) n -m 
Q~ - f. ~rJ., ());r'(J _ wd-) h- m 

and so on for the other complexes . 

is: 

To prove this equation, let the number of equally possible cases 

in the general domain of action, which leads to one of the complexes 

F c~o. , b.e t . Furthermore, of these t cases let p be favorable for 

the existence of complex ;=; )~for /i.J /;E for ~ J ••• , etc, 'Then the 

probabilities for the existence of the different complexes /;. ~ -=£~~~~~) 

are: -u 
~I:: ~ 

J ) 

Of the 11 favorable cases for complex F, J ~ 1 are also favorable for the 

occurrence of~ -{p._favorable cases for complex f=; , )\ ,:2.for the occurrence 

of 1? , etc. The probability of the happening E under the assumption 

that 1/ exists. The relative probability isf/r (E)is: uJ1 ~ i: or in general 
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The total number of equally likely cases for the simultaneous occurrence 

of the event E with either one of the favorable cases for!£ F,
1 
/~ J ••• , is: 

The number of favorable cases for the simultaneous occurrence of If and 

E is A 1 , etc. Hence~ we have measures for their 

Q - .!.!..L A ;l. ,-zAJ.. Q:>.:: z.Ac;).. 

A,= w,·-i1 

.f;, -: 1<,· t 

A,= w,.J<,.t-

A~ :: w~. i~ 
--6,. :: ~ ~ t-

Substituting these values 

. 0.- ~,·uJ, 
in the above expression 

I- ~·Wq... 
Q ~-ia·W~ 

/). . £ J<d-. fj uJrr.. 

corresponding probabilities. 

••• but 

••• and 

••• hence 

for Q,J ~) .•. then 

. -. 
as the respective probabilities that the observed event originated from 

the complexes /0 f;.J /},... Such probabilities are posterior probabilities. 

Now, investigate the above expression for ~) £i1 J • • • The numerator 

in the expression for a I is J,• U)l , but J, is simply the prior productive 

probability of bringing forth the event observed from complex ~ The 

product J,•w1 is simply the relative probability P,::; ( £) or the probability 
I 

that the event E originated from ft . In the denominator, Z 1~ wei-- rd, -= J ~9,,. J 
is the total probability to get E from any of the complexes ~ • From 

this, the probability to get E exactly rn times from ~ in n total trials 

is: f, = ( ~) .1<, • w,"' (I -wY- tn 

and the probability to get E from any one of the complexes, F, tntimes 
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out of n is: 

If by actual observation, E is to have happened exactly m times out of n, 

The cancel each other. It is 

not assumed that the posterior probability is proportional to the prior 

probability. 

Sometimes the different complex F may be 

that their prior probabilities of existence are 

In this case, the equation simply reduces to 

This equation gives the most general expression of the fundamental theorem 

which may be stated as follows: 

If a definite observed event, E, can originate from a certain series 

of mutually exclusive complexes, F, and if the actual occurrence of the 

event has been observed, then the probability that it originated from a 

specified complex or a specified group of complexes is also the posterior 

probability or probability of existence of the specified complex or group 

of complexes.5 

It happens frequently that the knowledge of the general domain of 

action is so incomplete that it is not possible to determine, a prior, 

the probability of the occurrence of a certain expected event. As stated 

earlier, this is nearly always the case with problems wherein organic life 

5yisher, Anne, The Mathematical Theory of Probabilities (New York: 
The Macmillan Company, 1922), 59. 
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enters as a determining factor or momentum, but the same state of affairs 

may also occur in the category of problems relating to games of chance. 

Suppose one had an urn which was known to contain white and black balls 

only, but the actual ration in which the balls of the two different colors 

were mixed, was unknown. With this knowledge beforehand, it is not possible 

to determine the probability for the drawing of a white: ball. If, on the 

other hand, from actual experience, the results of former drawings from 

the same urn when the conditions in the general domain of action remained 

unchanged during each separate drawing, then these results might be used in 

the determination of the probability of a specified event by future drawings. 

The problem may be stated in the most general form as follows: Let 

F~ denote a certain state or condition in the general domain of action, 

which state or condition can appear only in one or the other of the mutually 

exclusive forms, F1 , F~, FJ ••• and not otherwise. Let the probability of 

existence of 'F 1 , ,F~, FJ ••• b:e k
1

, k"', k3 ••• respectively, and when one of 

the complexes F1 , F,, F1 ••. exists let W1 , W1 , W3 ••• be the respective 

productive probabilities of bringing forth a specified event, E. If now, 

by actual observation, E happens m times out of n total trials, what is 

then the probability that the event E, will happen in the (n+1) trial 

also? 

By Bayes' Rule, the posterior probability or the probabilities of 

existence of the complexes F 1 , F~, • • • is: 
a. fl\ / \ n-TY\ 11 ~(J \h-111 

1\ ~ .A<, • ())1 < 1- wJ) /\ _ ...{(.p. ~ Wg~. I - u.J!J) 

Ul,- iJrJ-, u;;O- ())~n-rn C>lj.- 14·w;(J-"h.)h-m 

In the ( 11 +.1)th trial E may happen from any one of the mutually exclusive 

complexes F1 , F~, FJ, ... whose respective probabilities in producing the 

event, E, are W1 , W~, w3 , ••• The addition theorem then gives the total 



probability of the occurrence of E in the (n+l)th trial is: 

~ :;: Z ~:;;_ ( £) = Ql • WI 1- Q ~' W.i + • " • -tt '%"' (L - "'~ n-"'•""" r ) - L h\{ h- tn ° ( d- :. ~ ::}./ 4 ./ I I 

L I Wo~- J - Wo~-

If the prior probabilities of existence are of equal magnitude, the factors 

k in the above expression cancel each other in numerator and denominator 

and thus 

Example 1: An urn contains five balls of which a part is known to be white 

and the rest black. A ball is drawn four times in succession and replaced 

after each draw. By three of such drawings, a white ball was obtained 

and by one drawing a black ball. What is the probability that a white ball 

will be drawn in the fifth drawing? 

In regard to the contents of the urn the following four hypotheses 

are possible: 

F 4 white, 1 black balls 

F 3 white, 2 black balls 

p, 2 white, 3 black balls 

F : 1 white, 4 black balls 

Since nothing is known about the ratio of distribution of the different 

colored balls, by direct application of the principle of insufficient reason, 

the four complexes are regarded equally probable or: J, =- J, :: J.g :::-~ :: !iJ , 
If either F1 , F j.' F.:P or F'lexists, the respective productive probabilities 

are: w1 --: 
4/s 

1 
W:)..-= %- J W0 ; %- J LVH::. ~ .. 

By a direct substitution in the formula: 

( 
n-YY) 

0 __ iw:: J- we~-) • w~ / ) 
11 " \ c:J- ;;- t :ll 0 • · · 0 J tvt. n -= ~ 0/Y'\JL rn = 3 • 2 w; ( 1 - waJ " h\ -o 
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then~ rt)ffYt-)+f~)(t-Y~) 1~)7~Y~+ff) (f}ff=) _ ¥76 
IP - rtPm-) +(&)3(%-) +r%13MJ ·+?&-J3!%-J -7s , 

Bayes' Rule has been reduced to the most general form: 
i Tr\( \ 1\- rn 

£) _ ~· Wd--/- Wt?J 
11 - tX . wJ..IT\ o- w); l'l - YY\ 

This is an exact expression for the rule, but it is at the same time almost 

impossible to employ it in practice. Only in a few exceptional cases is a 

prior known, the different values of the often numerous probabilities of 

existence~, of the complexes~, and in order to apply the rule with 

exact results sufficient facts are required about the different complexes 

of causes from which the observed event, E, originated. Bayes deduced 

the rule from special examples resulting from drawing balls of different 

color from an urn where the different complexes of causes were materially 

existent. The probability of a cause or a certain complex of causes did 

not here mean the probability of existence of such a complex but the 

probability that the observed event originated from this particular complex. 

In order to elucidate this statement the following example is given. 

Example II: Start with the following four hypotheses: 

F 4 white, 1 black balls 

F 3 white, 2 black balls 

F 2 white, 3 black balls 

F 1 white, 4 bla·ck balls 

assigning 1/4 as the hypothetical existence probability. 

By marking the five balls similarly as in the last example, with the 

numbers from 1 to 5, the following complexes are found: 
s 

F : 4 white, 1 black balls in ( 1 ) ways 

6Fisher, op. cit., p. 65. 
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F 3 white, 2 black balls in 
s 

( :2. ) ways 
s 

F 2 white, 3 black balls in ( j_ ) ways 

F 1 white, 4 black balls in ( s ) I ways 

This gives a total of 5 + 10 + 10 + 5 = 30 different complexes. Assuming 

all of these complexes equally likely to occur, the following probabilities 

of existence and productive probabilities exist. ~ .- ~::,., ::-~0 = ~D 
w, ~~:::w~; wLI: w5- :: %- ( paoduc.+;ve pRobA bi ld-y foR 0) 
t.o"':: w'1"' • ... = w,~- :: %- (prwduc.+;ve ptlobBb; 1;~,} for< 1:::._}. 
w,~.:w,'J'=o*"' = w:;.s:: %,-- ( pRoduc+,' ve ptcob~b , ;/~1-y .foR !!) 
w~,o "';o '•.. ' '-"3o ~ k'<;- (p~odud; ve pf!.ohrtb.f,-Jy {012 /-'1) 
' · The total probability of getting a white ball in the second drawing 

is now 3 
Wo-( I- wcA) Wd-

i wj {I- wo--) 
Actual substitution of the above values of W in this formula gives the 

final result as : Q :: 1 %.? {s~e. pRoof L J 7 

II. 

This second discussion of Bayes' fundamental theorem has almost the 

same background information as the first. However, the equation repre-

senting the theorem is somewhat different. If the information sounds the 

same keep in mind that the theorems are the same only in different forms. 

When an event has happened which may have been due to any one of a 

number of different causes, the question arises as to which cause has most 

probably been in action. It is possible, from an observed happening of 

the event, to draw any conclusions as to the relative probability of the 

various causes that may have le6 to it. 

?Fisher, op. cit., p. 66. 
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~18~)?8 is the probability that condition A~is satisfied when 

condition B is known to be satisfied. Suppose that A,, A~, ••• ,A# are 

n conditions of which one must be satisfied, and only one can be satisfied 

when a trial fB ~ ~ f>n;./3 

fAl_ ~J.B 
2 ~;. PA).8 
). 

Suppose now that the ·event E may have any one of n distinct causes, 

of which in a given trial only one can come into play. Let condition 

B be that. the event E shall happen, _and condition A, be that the i tncause 

has come into play. Then ~; is the probability before the trial, then the 

i ~cause of E will come into play: J?Ai8 is the probability that E will 

happen as a result of the i thcause; and ~18 j/1 is the probability when 

E has happened, that it has happened as the result of the i +A cause. The 

formula may be conveniently written Q ' r..L " s;.., 
D./.; :: ~ Yl.-, s; 

Where ~· is the probability of the i ~cause b~ore the result is known 

(the prior ·probability of the i ±h. cause); S ~ is the probability of the event 

when the i ih cause is in action; and Q~ is the probability of the i~cause, 
when the event is known to have hiappened (the posterior probability). 

This is the fundamental theorem of Bayes' and so long as the Y's and 

S 1s are known, there can be no ambiquity in applying it. The hesitation 

that is undoubtedly felt in making use of Bayes' formula depends upon the 

fact that, thought the S 1s are generally known, some assumption has to be 

made with respect to the T's, and the calculated probabilities of cause 

depend on the particular assumption made. 

Example 3: A box contains n objects, each of which is either white or black, 

and each is equally likely to be drawn. An object is drawn and found to be 
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white. It is returned and an object is drawn. again. What is the 

probability that it will be white? 

Denote by Pr the prior probability that r of the objects are white. 

Then YPr ;z. Y' Pr is the posterior probability that r are white' and the 

probability of drawing a white object at the second trial is 

i fr r 2 /AI i!; r, 
I 

If it is assumed that j)r is independent of r and therefore equal to )V , 

this .last probability is % + ~ If, however, each object i? the bo:x; 

P AJ ~ I 
is assumed to be ~qually likely black or white, then r = yl/

11
_..,.)1 •j.N 

I I 1/ Ill # l~ I • 

and ·the required probability is 6 + I j ' 

Example 4: A bo:x: contains a number N of objects not greater than m; and 

it is known that1A of them are marked. It is assumed that when a set of 

m objects is drawn from a box, all sets of mare equally likely. A set 

of m is drawn and it is found that m of them are marked. What is the 

probability value of~? 

It follows, from the data, that N is equal to or greater t4an 

N+m-m 1 • 

N objects is 

The probability of the observed event, when the bo:x: contains 

JJflm ~ (JJ-M)l • (AI- n) ~- rn,)! {A;- n-1-f\ +m1)! 
;J(/ If \I 7 tr\. vJ-rnJ. 

l l 
that is M • .n • 

m1 ~ (1!-fC\ 1)1 (~-TY\J l 
{ N - nJ ~ {);- "') ~ 

Hence if Ph is the prior probability that the bo:x: contains N objects, 

then, after the 
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The most probable value of N is that which makes -{?);) Pn as great as 

possible. 

Suppose first that all possible values of N are prior equally 

probable so that Pn is independent of N. Then the most probable value of 

N satisfied the inequalities 

f(N} > 1J ( ;V-1} 6 (i,;) > i (;1/+.1) 

which gives, for N, the greatest integer is nmjml * 

Suppose next that fn ~JV , so that large values of N are prior 

more likely than small ones. The most probable value of N is then given 

by N~(;J) > {JJ- :J..)j (JJ -.1) AJ~ (IV) ':> W+:1)i_ (/J+:t) 

which gives, for N, the greatest integer is ( h -1)( m -l'Jjrrn,- ::t) , 
_j_ 

If lastly~~ ~+1, so that small values of N are prior more likely than 

larger ones, the inequalities are 

i(v) > i(JJ-:1} 
/J+:t N 

giving for N, the greatest 

Example 5: A and B play a 
j_ 2 

game~ at which A1 s prior chance of winning is 

equally likely to be n) n) I I 1 ) 

n -~ ~ 
.--- or h Out of a set of a + b 

games, A wins a and loses b. What is the probable value of A1 s chance 

to win the next game? 

If Ais chances of winning is ~' the .probability of the 

result of the a + b games is ~ -1-b)J ( Y") o.~; _ :) h 
a! b! h ( I , 

observed_ 

Hence the posterior probable value of A1s ch~Ge of winning the next game 

is I (F;) n_+j_ {I - ~/' 

r (-~t {1- ;;) !-.t r)~ t-) b 
Now, if n is not too small, the quantity * { ( h (J- i\ is very 

:1. 
nearly equal to 1 I 1 I r' <i. \ o a.. " o , 

Ju X ( 1 - X J d X :: ( o.. -t b + i J 1 ' 
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Hence, if n is large enough, the required result is very nearly equal to 
G.+i 

a. -t b + ~ . It has been assumed that the probability of A 1 s chance of 

winning being measured by ~ is itself independent of '(', 

Suppose now that the probability of A1 s chance of winning being 

measured by~ is proportional to 'fn(J - ~so that neither A nor B is 

extremely likely either to win or lose. Then the above expression, for 

Example 6: An observer watches the spinning of a coin, and notes the 

sequences of heads and tails. What is the probable number of spins that 

have occurred, when he has noted M sequences? 

The number, N, of spins must be equal to or greater than M. On 

the supposition that the number of 

observed event is ~ -iJ J 
Ctn-1J 1 (n-m) l 

spins is N, the probability of the 
_1_ 

•,;) N- :1 f-

Hence, if the prior probability that the number of spins is N be repre-
JJ} _ I 

sentect by e" , the probable number of spins is i_(N-m)! d.IJ - 1 R,; 
i (N -.1)~ _/ D 

(N-M)! Jp- 1 1/-J 

On the assumption that all numbers o_,t spins1 equal to or exceeding N are 
< ).}. I 
L. ~~ c! -;:r::. I 

prior equally probable, that is M-= rr.. IN=fY\l• J 
~ c..v ~tH _1.., 
L. . 0 AJ - 1 

JJ =th (AI- MH ~ 

( 
r\- t'l\-l rn 1- ·s:J 

8william Burnside, Theory of Probability (London: Cambridge 
University Press, 1936), pp. 57-59. 
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Moreover, on the same assumption, the most probable value of N is 2M, 

Now, in this question, it is not a reasonable assumption that all 

values of N above M are equally probable. The spinning must take time 

and for this reason there must be an upper limit toN, If it is assumed 

Hence the probable value of N is ' 

[ 

( !h --t-1 )( rn -t- .l J 

jrn 1 - (n>' - I"Y\)l • +- • -1BI ( o j ro - m ot J 
This is always less than 2M, 

It has been seen above that when N is large the probable number 

of sequence in N spins is !N, the duration of the spins not affecting the 

question. When, however, a number of M sequences are observed, and the 

corresponding probable number of spins is to be determined, the question 

of duration does affect the question and the probable number of spins is 

less than 2M. 

Example 7: There are M counters, marked from l to M, in a bag and one is 

drawn, each being equally likely to be taken. The counter marked N is 

drawn and a coin equally likely to fall head or tail is spun 2N times and 

the excess 2n of heads over tails is ·noted, This is repeated 5 times. 

2N spins being made each time and the excesses of heads over tails are 

found to be n,J 1\:LJ., . 
1 

f\s-• The whole proceeding with the numbers 
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fY\ 
J r",) nl-; n3 ) n._. J l')!)- is reported to a calculator, the number N only 

being withheld from him. What conclusions can he draw about N? 

The prior probability that N has any given value from l to M is 

v'rf\. If Lv, J is the greatest of the positive numbers Lv, ~ jpj.~ . .• ) //.ls-1) 

zero, when N L (JJ,) and is ( j;J)' K . I ( ,\ } 

the probability of the obser~ved set o~ ejxce~es).~f5heads over ;ails is 

). ~» .i=.:J. (N+~ 'L, t.Al- nfi-J • 

The approximate value 
I 

h-ol )~ 
of thfs 5latt;r expression i ·s 

L --AI 1 "~ . 
If then N :::"{n) the calculator infers that the probability that the counter 

\ If>;, - ~ 
drawn was marked N is IN ~ C:. 

p 'I~ - ~ 
L /JJ ~ c: n, ;v 

The most probable value of N is that which makes 

wheRe 

-~~%. 
e. 

s 1 

6 :::: iY, 
J 

as great 

as possible. The maximum value of this quantity when N varies con-
.Jff-

tinuously, is given by AI~ S ; so that the most probable value of N is 
.;lo/ 

one of the integers on either side of · /S • 

I 

- ~IN~ 
Since C: when sensible in values, changes little when 

N is changed to N + 1, the probability ~at N ~es between N 
()I~ - 1'!!- - 1N 

be written, approximately J11. N e J;J 
fo:;J AI - % e -~ d;.J 

and N may 

Putting G :: JJX, this is 

I (fk 
rf%J Jr#j_ 

%-I - X 

X c: dx 9 

9Burnside, op. cit., pp. 62-64. 
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III. 

An event A can occur only if one of the set of exhaustive and 

incompatible events B1, B~, ... BN occurs. The probabilities of these events 

(B 1 ), (B~), ••• (B#) corresponding to the total absence of any knowledge as 

to the occurrence or nonoccurrence of A are known. Known also, are the 

conditional probabilities ) 
(R, Bi 

for A to occur assuming the occurrence of Bi. How does the probability 

of Bi change with the additional information that A has actually happened? 

The question amounts to finding the conditional probability (Bi, A). The 

probability of the compound event A Bi can be presented in two forms 
( AB;_):: (B;)( A1 8;_) 

(~ 8;,) ::: ( r+}( FJ;1 A J 4 

Equating the right~hand members, 

the unknown probability (Bi, A): 

the following expression is derived for 

1. . .I {8JYR, a;.) .. 
tB~ AJ =- (A) 

Since the event A can materialize in the mutually exclusive forms 

/}13;.-
1 
tt4;. ,.

1 
/)811 by applying the theorem of total probability, 

R ::: (B, )(rt BJ) _,_(B.,.)( A;B,;l.) +.,,. -r( .6,.v )(A) BtJ) I 
) 

It suffices now to introduce this expression into the preceeding formula 

for (Bi, A) to get the final expression 

( B ~ ») :: ( 8i-"fA1 Sl) 
) (B,){!l) 81) +( B.~Y Pj /3~) +I ' I + ( BtJ )(A J f>p) 

This formula is known as the formula for probabilities of hypotheses. The 

reason for that name is that the events B I' B~, ••• B AI may be considered as 

hypotheses to account for the occurrence of A. It is customary to speak 

of probabilities ( 6,) 
1 

{ B:;.J) , I 1 f /3Jr)) 

as prior probabilities of hypotheses 

while probabilities (B ' n\ 
)-) rl) 
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are called posterior probabilities of the same hypotheses. 

Example 8: The contents of urns 1, 2, 3 are as follows: 

1 white, 2 black, 3 red balls 

2 white, 1 black, 1 red balls 

4 white, 5 black, 3 red balls 

One urn is chosen at random and two balls drawn. They happen to be white 

and red. What is the probability that they come from urn 2 or 3? 

The event A represents the fact that two balls taken from the 

selected urn were of white and red color respectively. To account for 

this fact, there are 3 hypotheses. The selected urn was 1 or 2 or 3. 

These are re~resented by B1, Bj, ~. Since nothing distinguishes the urns, 

the probabilities of these pypotheses before anything was known about A 

are ( !?>,) -=- ( 8~} -:-{ B_g) :; ~, 

The probabilities of A, assuming these hypotheses are 

(P;B,) -;_ Is- (AJ B~) ~ ~ (f)/ B;) =- ~} I 

It now r emains to introduce those values into the formula to have a 

posterior probabilities: s,-..5/ 
- /JIJ> 

:: 

Retaining the notations, conditions, and data of the problem, find the 

probability of materialization of another event C gr anted that A has 

actually occurred. Conditional probabilities ( C_; AB~ ) ; 

are supposed to be known. 

Since t he f act of t he occurrence of A involves t hat of one, and only 

one , of the events , B1, B~ •• • BAI, t he event C can materi alize in t he 
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following mutually exclusive forms CB1 , CB.:l., ••• , CBAI. Consequently, the 

probability ( C/~) which is being sought is given by 

(c) n) :: ( ce.J n) -1- ( c/3:>) R-) +,, . + (c BAJJ J'J)J 

It suffices now to substitute for ( 8~ fl-) its 

formula to find the final expression 
(C

1 
R);; 

expression given by Bayes' 
AI 

; ~ ( 13A. )( liJ ,8; ){ <; RBA,) , 

~ (B;YR1 &) 
.I= I 

It may happen that the materialization of hypotheses B;makes C inde-

pendent of A, then ( C
1 

A 6~) =- (c) B; J 
and the equation reduces simply to ~ {/3 -\frt 8 .V C iJ ·) 

(c) A) :: £=, A'" I ~;, ~ 1 /.#( • lo 
Z ( 6).){ A

1 
8)) 

,t'-::1 

By making an extended use of the infinitesimal calculus, Mr. Bing 

and Dr. Kroman in their memoirs arrived at much more ambiguous results 

through an application of the rule of Bayes. Starting with the fundamental 

rule a~ {~)l,. w~(i - w':l )\-ffi & '"~.;g".) 
2. ( ~)J;. Wc~-rt\(J - w~) h- Y'f\ 

simple conditions inside the dorr~in of causes can be encountered. The 

total complex of actions may embrace a large number of smaller sub-complexes 

construed in such a way be regarded as a continuous process, so that the 

productive probabilities are increased by an infinitely small quantity 

from a certain lower limit, a, to an upper limit, b. Denoting such 

continuously increasing probabilities by V and the corresponding small 

10J. V. Uspensky, Introduction to Mathematical Probability (New York: 
McGraw-Hill Book Company, 1937). 
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probabilities of existence by ~dv , the total probability of obtaining E 

from any one of the minor complexes with a productive probability between 

d.. flld fJ rJ. :?; a_ 
1 

j3 <:. b) is f :-t t< V Jv , · The probability 

that when E has happened it originated from one of these minor complexes, 

or the probability of existe%ce of some one o£ those complexes is : 

/ =- 4 uvdv 
j; u._ vdv 

The situation may be still more simplified by the following considerations. 

In the continuous total complex between the limits a and b is situated 

( b-o..) / d \1 individual minor complexes. Assuming all of these complexes 

to possess the same probability of existence, then J 
(A. v :::: 

The two formulas then take on the form 0 J_ (/3 j. / 1 :: i:J -o.. )d- v v 

o_ /1 vdv 
6 

1 - £)) vdv 

dv 
h-r.L 

A still more specialized form is obtained by letting a = o and b = l 

1~ r: vdv 
fJ _ J/> v iv , 

I - £1 vd v' 

which gives: 

Example 9: An urn contains a very large nUmber of similarly shaped balls. 

In ten successive drawings (and replacements ) , 7 with the number l, 2 

with the number 2, and l with the number 3 were obtained. What is the 

probability to obtain a ball with another number in the following ·drawing? 

The balls are marked 1, 2, 3 or "others. " A general scheme of 

distribution of the ball in the urn may be given through the following 

scheme: 

nx balls marked with the number l 

ny balls marked with the number 2 

nz balls marked with the number 3 

nt = n (l-x-y-z) other balls. 



Hence x, y, z, and t represent the respective productive probabilities. 

Let such probabilities assume all possible values between 0 and 1 with 
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lfw 
intervals of !Jt , the possible conditions in the total complex of actions 

is obtained. Each of these conditions has a probability of existence, s, 

and the productive probability x, y, z, and 1-x-y-z. The original 

probability for 7 ones, 2
1

twos, and 1 three in ten drawings is 

/0" i ? _j /= 71.., I J I s~ X , '( " Z .-, ,. - " ;/ 
Now when n is a very large number, the interval/A) becomes a very small 

quantity, and may approximately be written: S = udx dy Jz 
and also write the1~bo/e Jsu~ ?Pffriple ~te~al: 

1 
cJ j. 

/:- ?/r1.fl2 ~ /o h u ·X· '/'"2. d.X j 2 

where p=l-x and q=l-x-y. If now the above event has happened, then the 

probability to get a different marked ball in the eleventh drawing is: 

() ~ ~
1 £' ;;1 

1 
k~/. /. 2r;-x-y- z) Jx Jy J2 

£ /o £Z u·,x oyzb z_ dxdyd2.. 
It is quite impossible to evaluate the above integral without knowing 

the form of the function u, but unfortunately the information at hand tells 

absolutely nothing in regard to this. Perhaps the balls bear the numbers 

1, 2, 3 only or perhaps there is an equal distribution up to 10,000 or any 

other number. The information is really so insufficient that it is quite 

hopeless to attempt a calculation of the posterior probability. 

Many adherents of the inverse probability method venture boldly forth 

with the following solution based upon the perfectly arbitrary hypotheses: 
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In this case the limits of x are Q and 1, those of y are 0 and 1-x, those 

of z are 0 and 1-x-y. 

This is a well-known form of the triple integral which may be 

evaluated by meansof Dirichlets 1 ~he9rem: 
1 f 1 ;1-x 1 1 -x- 1 b -

a : /o lo /fJ A' '/ 
C(b) C(rn) r(n) 
r (I +b +l'Y'\ +n) 

Remembering the well-known relation between gamma functions and 

factorials, r (h +Jl := n l by a mere substition in the integral, the value 

of the probability in question is 1:14. Another and equally plausible 

result is obtained by a slightly different working of the problem. 

The successive drawings have resulted in balls marked 1, 2, or 3. 

What is the probability to obtain a ball not bearing -such a number in the 

eleventh drawing? This probability is given by the formula 

1/ v 10

(; - v) d v -= I·;/) 
);_' I o d V # ~ " 

Quite a different result from the one given above.11 

A more astonishing paradox is produced by Bing when he gives an 

example of Bayes Rule to a problem from motality statics. A motality 

table gives the ratio of the number of persons living during a certain 

period, to the number living at the beginning of this period, all persons 

being of the samq age. By recording the deaths during the specified period 

(one year) it has been ascertained that of s persons, say forty years of 

age at the beginning of the period, m have died during the period. The 

observed ratio is then (s-m)/s. If s is a very large number this ratio 

may be taken as an approximation of the true ratio of probability if survived 

1~isher, op. cit., pp. 70-72. 
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during_ this period. If s is not sufficiently large, the believers in the 

inverse theory ought to be able to evaluate this ratio by an application 

of Bayes' Rule, by means of an analysis similar to the one that follows: 

Let y be the general symbol for the probability of a forty year old 

person being alive one year from hence. Each of such persons will in 

general be subject to different conditions, and the general symbol, y, will 

therefore have to be understood as the symbol for all the possible pro-

ductive probability values changing from 0 to l by a continuing process. 

Assuming s a very large number each condition will have a probability 

of existence equal to udy. What is the probability that the ratio of 

survival of a group of s persons aged forty is situated between the limits 

cJ- and }3? 

The answer according to Bayes' Rule is: 
{.8 5-11) ( ) f'1\ J 

/c~- y 1-'1 lA y 

1/ '/ s-n._ (J ''/r11 

v- d 'I 
I 

Let us furthermore divide the whole year into two equal parts and 

let y be the probability of surviving the first half year, y~ the 

probability of surviving the second half year, and u
1
dy

1
, u~dy~ the 

corresponding probability , of existence. Then the respective posterior 

probability of y
1 
and y ::l are: 

--J S-h\( ) h'\1 I 
11 I- Y 1 1)...1 eN I 
(f ~-m 1 { )lh 1 

/i) ~. I-~ I u, 01 y I 
S-rr,{ \ ~ d 

'/~ I - '/ d-l ~ '/?.. 
(f S-rn( \1"1¥-J. d 

)tJ 'f~ 1-'/?-J U2. i2 
(m

1 
and m1 represent the number of deaths in the respective half years). 

The probability that both y and y are true is 
s-m I \m, 

~I I (I- '/,J LL, d'l, multiplication theorem: 

(' s-m,j )tn' d 
Jo Yt ()- '/, U I Y1 

then according to the 
s, ..... tn . \Yhz... j 

'I:;... I -'I')) /)._2. , i 

£ - rn / ) h'l"L j 
o '/'J- ( I-'/-:L u,_ y 1-
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where y=y 1 • y~ • 

The probability that the probability of survival for a full year, 

yj'jis s;~~~~ed b\t~~en ~~~),j]nit~ ~and j3 is Jtherejfore : 

Y c/- ~I } ' (1 - 'f :J-) u., P U :J. • 'iJ " ' .a j '),s~rn,{;-y)rn'tA,d~, 0 'l~s-(/ ~y:J-) f'f'J'U..!ldy 
where the lj]nits in the double integral in the numerator are determined 

by the relation: 

Choosing the principle of insufficient reason as the basis of 

calculations, merely assuming that all possible events are, in the absence 

of ·any grounds for inference, equally likely, the various quantities 

expressed by the general symbol, u, become equal and constant and cancel 

each other in numerator and denominator, which brings the posterior 

pr~ability expressed by (I) and (II) to the forms: t 'tS-T'f\ CI-"!YI\ dy 

where the lj]nits in the numerator ·in the latter ey;ression are determined 

by the relation: .J.. ~ Y1 Y~ L ;B .. Letting Y ;_ -=- 0, and then /- '/ ~ 2: tJ /) 
this latter expression may after a simple substitution be brought to the 

2 (})I U-2J 'f'r,'--dz.. 
form: 

/ -z(/-':1 ) 

( see Proof II). This will result in a different probability from the 

equation (I) found by Bayes' Rule, however, both used the same discussion 

and proof. 

12Fisher, op. cit., pp. 73-74. 
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Whether or not the reader agrees with Bayes' theorem and the uses 

of this theorem, he must investigate all aspects of the theorem plus the 

discussion and background that led to it. Bayes, however, is assured of 

his immortality since he was the first to use mathematical probability 

inductively, "that is for arguing from the particular to the general, 

or from the sample to the population."13 

13E, T. Bell, Development 9f Mathematics (New York: McGraw-Hill 
Book Company, Incorporated, 1945), p. 583. 
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1
w31 w'-IJ W~ 

w~, J w/)) I • • I U) I s-

PROOF I 

2Yh a, ~ (4J03r~Y %-)s- ~ ws-
D~ :. (~~(~'fJ;);o ~ lff!:-
Ol , r't/1%--Y~·);o= ~ 
o~ 0 rli/!'f;J(iJ.J"' %:~r 



!, ( S-m1 ) f'f\ S Yll tl\ PROOF II J 

0//, {J- '/, 'y/2 - ' - 2 
(t- y;J "'•jy,· elY~ 

j; ~ 
1 

s -rn1 (!- y,) rn, [} is -fr\ (; -yj rnt c/,/ ·JY-1. fT7 

The double integral is of the form j ~) ;::('/,) y1)dy
1 

Jy:L 
where (A) is defined by means of relations: J. < "'{1 '/2 L j5 j L y

1 
L. /_; tJ < ~ L J. 

I 

The field of integration is thus the area swept out by the hyperbola 

'/1 "{ d- -::: J.. , the st,line y~ ::: J , the hyperbola ''/ ('} ') ~ f3 and the st, 

line "It -:::. l . Changing the variables by means of the transformation: 

'1 1 "':;. -=- '/ -;: ~ { ~1 -z.) J - ~~ -= 2_( I - '/) ::: lp ( t 2.) 

we get the following new double integral 

I !r/1,) = [<f('D ,) ) if( tJ 2)) j-J( Jych 
where J is the Jacobian or functional determinant defined by the formula: 

T-=- J# d~J dte a+ aw atJJ J J; ::- 0"/ ~- 02- o'f ~ 
'/:}'! gz.. ) 

i- - ._J ::: ~ - tQ ("' -z_J ~ :: J-.JJ- ,t) ::. tf(y) '2 
'i 1 - I 2. { - L(i _ '/J - I) I 

/:rl = 11 u-';,~~)7· af_~(,~~.d 1 ~ l-~~ ~'1) 
The transformation il a double inf~g~11 implies in general 3 parts 

(1) the expression of /:::tf1 Y~in terms of y, z; (2) the determination of the 

new system of limits; (3) sub. of J..-1, ) J-h. The third solved above. The 

solution of the two first is purely algebraically. 
norn~r'Ul ro;c : 

fr s- rn 1 ( \.5 - M -rn'l.( d 
'i, 1---I,J I 1- '/:jd ---L· ~2-

ft\)1-fn1- :- YT\) d'\,' d~2- = ~~;I J,)J7. J ~~ = {J -2(t - y')_)
1
· 

:: f ( ~ s-m 1 I_~ ml {_jj .S-ft\( Y1 - V) m2. {~)J Jz_ 
I u I J 1, -; 'I, i I '/ 

: [ [ (Hr)"'' (-.{' -"')( '11- -y) "'z ( /-t) d1c/z_ 
'f\ 



/J [z (;_ y)} "'• {j• s -"')6 _ ,_(J _ y) -'j) "'{;- y) c!y )-__ 
i, 

j I J! {J - ~)} "'• (y 5 - "') [!~ ~'/)(! - ;)} >n '/J -y) Jycl< 

If 

The easiest way to determine the new system of limits is probably 

by constructing the contour in the new field of integration. The hyperbolas 

'{ 1 'h- :: c).. and ~ 
1 
'b.. -::: (5 are in the new field of integration changed 

into the two straight lines '/::: cf. On d Y -:: /) which determines the 

limits for the variable y. An inspection of the expressions for if( { 1.J '2.. J 
and lp ( ~ J ""'2..-J shows that the two straight lines "} ~ :: J o. n cJ ~ 

1 
::- / 

become in the new field 2.. ::: / G-.Y\d '2.. = 0which are the limits of z. The 

contour (A1 ) simply becomes a rectangle bounded by the straight lines 

Z.. =O 
1 

"/ ~ /3) 2.. -::.. /) o.."'d ~ -=- d- The complete transformation finally 

becomes (/3 S- h\ \ rn+l I (I 
) r y (J -- 'I J d 'I ) o 
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