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INTRODUCTION

This paper represents a study ef the text AN Imtreductiom Te Msirices,

Vectors, snd Linesr Pregramming. It is composed chapter by chapter takiag
the more impertant ststements, defimitiens, and theerems from each and
then werking eut exerolses to illustrate their meaning., Other exerelses
were worked im the course of the study than are imcluded im this paper but

these were selected as brief illustratiens ef the type of preblems that

were worked,



CHAPTER ONE. INTRODUCTION TO MATRICES.
There are two kinds of mathematical elements: matrix and vector.

A matrix A is a rectangular array of elements, denmoted by

1]

A= Tapp 3 g

X )
8yl &0

An nxn matrix is saild te be of order an, Twe matrices A and B are maid

40n

te be equal when they are of the same order and all their corresponding
eatries are equel., Likewise, & real matrix A is greater than a real
matrix B of same order whea each entry of A is greater tharn the cerre-
sperding entry of B, Matrices car be add2d only when they are the same
order or conformable f&r addition. To multiply a matrix by a secalar
multiply each element of the matrix by the scalar, When multiplyimg
two matrices they must be cenformable for multiplicgtiom er the number
of celumans of A must equal the number of rows of B, For example, if

A is a1 x pmatrix and B is a p x 1 matrix they are conformsble for
mltiplication and the product C = AB is a 1 x p matrix., ZFach entry
Gij of C is obtaimed by multiplyimg correspending entries of the

ith row of A and the jth column of B and then adding the results,
EXERCISES:

1. Find, if possible, all values for each urknowsn that will make each
of the fellowing true:

(a) [2 4] = [21:—\ X3z (b) \[2 33] > ‘VO 1}
5%~ 57 | - g -

x >8

(e) 2 31 >‘Oi
, X -4l 8 -2 not pesaible,

- -



2. Perform the addition, 12 ) _ 2 0
i =30{ * (5. T -1 -3
3. Caleulate, if possible, the fellowing,
[12] [ 3] [[0-3] {3/ 8] K -1]
[ 5] [—5 + 66 a1 = 7]
7 of -2 -2 5
be Given 4 =r2 4 ard B = [-2 O] Calculate:
[—3 ) -1 3
() 38 = e _3 (b) 4 + 3B = [.4 2
=9 <12 -6
5. Multiply: [o 1] 01 [2 1l
34) |21 = s

02

6. Multiply: [z 4 o][ 400] [8 2]
-1 1 B

[ v]
E

]



CHAPTER TWO. INTRGDUCTION TO VECTORS.

A vector o of order n is an ordered set of m scalars, ( 2, 8, + . 8 Yo

B

The a;'s are compenents of o{ » and for n compenents we say of is zm »-

dimensional vector., The addition of two vectors is called their resultant.

The lemgth of the line segment is the magnitude ef o{ designated /v{ /
2 .
and \DQ\ = \l x% %, ¥ x:; o« Direction is indicated by an arrew

and expressed by cesimes of dirsction angles: e@eq =Xy

\lx?+x§+x§

ces97_= Xo ces%r- x3

N \ERERE

An impertant set of umit vectors im three dimensional space is
i=(1,0,0) 3J=(0,1,0) k=(0,0,1). Multiplying a vector by a
negative scalar chamges the direction, The szcajar preduct ef twe .vectoers
is derived: by multiplyimg corresperding cemponeits and thern adding these
products, Ifc(und 15 are twe monzere vectors im the xyXs-plane, then

X /g = Fﬁ\ I #\ cos & where @ im the smaller positive anmgle between
<y and ﬁ .

EXERCISES:

1, Répresent ( 3, =2 ) en a graph.




2+ Represent ( 2,4,3 ) on a 71 graph.

3. Find the magnitudea of the fellewing vectors,
TR I feolt ) yegy o ~1)
‘”( \ = 2% 359> = Vatorio= 29
Bl=derto> « free <y

l)’iv—‘fﬁ’ﬁo‘—r&)l = ‘( loti =V 17










CHAPTER THREE: MATHEMATICAL SYSTEMS.

A Mathematical system consists of a set of elements, at least one
equivalence relation among these elements, at lsast éne operation over
these elements, and postulates comcernimg the elements, operatioms, and
relatiens, A relation between two emtitles is a bimary relation and
designated by R where a R b means "a in the relation R to b." A relatien
R over a set A is an equivalence relstion over set A if and only if the
follewing properties are valid for all elements a, b, ¢ of A:

(1) aRa ( reflexive preperty )

(2) if aBRb, the bRa ( symmetric preperty )

(3) 4if aRb and bRe, then alic ( transitive property )

The small lether Yo' will be used to designate an operation used to
combine two elements of a specified set., A binary operatiomn "o over

a set S is s rule or procedure by whieh any twe slements of S are com-
bined te preoduce a unique third element which may or may mot beleng to
S. If the thiwd éiement always belengz to S, then we say S is clesed
umder the operatiom "o", Four laws of operations are defined in this
chapter, They are the commutative law, the associative law, the dis-
tributive law ( which imcludes two operatioms, a right and left distri-
butive law ), amrd the cancellatiom lgw. If A,B, and C are matrices that
are conformsble for sddition, the commutative and amsociative laws for
matrix addition are velid. The ssseclative law for matfrix multiplicatien
is valid and the left distributive lesw for mat?ix multiplication with
respect to additiem is valid. Multiplicatien of a matrix and a scalar

is commutative., In genersl matrix operation lsws for sddition and



multiplication differ from scalar, AB does mot imply BA, AB=AC dees not
imply B=C, AB = O does not imply A=0 er B=0,

For mn-dimessienal vectors, the commutative and associative laws
are valid for addition., The scalar preduct ef twe n~dimensional vectors
is commutative, amd the distributive laws for the scalar preduct with
respect te additiem are valid.

An elemert e in a mset A, such that a o o == for évery a in A,
is called an identity element for the operation "o". I  is the idemtity
matrix of erder m defined feormally as a square matrix of erder m im which
every eatry er the main diagorsl is 1 and all other ehtries are O, Let
e be an identity element for the operation ¢ over the smet A. If there
exists an element q such that a e ¢ = q o a = e where e,a,snd g belong
te A, them q is called an inverse of a with respect to the eperatieﬁ 0.
The follewing table summarizes the laws that are valid for additiem and

multiplicetion of matriges and vectors,

MATRICES
: , additien multiplicatioen
COMMUTATIVE LAW  A+B= B+A : ne

ASSOCIATIVE LAW ( A+B ) *C =4 + ( B+C ) (AB)C =4A( BC)

DISTRIBUTIVE IAW A ( B+6 § = AB+AC
( 44B )C = AC + RBC

CANCELLATION LAW A + B=A+ G implies B=C ne
VECTORS
ditiom maltiplicatien
COMMUTATIVE LAW q"..}.ﬁ: IQM o(.)Q = ﬁo(

ASSOCIATIVE LAW (f+8 )+y’=ag.|.-f()gﬂ,)
DISTRIBUTIVE LAW X -( R+¥)= - B tote ¥
A+p) ¥ -5+ Y

X+4 =+ /mi)lie,g ﬁ: e

NoT  Defived

CANCELILATION LAW -1



A system of scalars ( @:yfiold ) i8 defired as a set S with at
least two elements, a bimary‘félatien of equality over S, .two bimary
eperations @ and ® clesed urder S, and nime postulates, The postulates
include the commutative law and associative law for beth operations, am’
ldeatity element e for both eperations, at imverse for each element in S
with respeet to beth operations exéept e with respect to & , and the
distributive law with respect te @ . -

A ring 1s a system consisting of all the requirements for e fleld
except for the commutative pestulate for () , the identity element for
® , and an inverse element for ® « If you emit the laverse element for
® and add the camcellatien law for @ you have a system called aam integral
domain,.

A @iroup 18 a system comsisting of a set of elements S, a bimary
relatien of equality ever S, the bimary eperatien e under S which is clesed,
and three pestulates. The postulates imclude the associative law, an
identity element fer e, and an inverse in S for each element with respect
tere. A greup that alse postulates o is commutative iam éalled a commutative

group er Abeliaa greup.

FXERCISES:

T Given the set of elements 1 and O, the eqﬁivalence relation of
equality, amd the operations of @ and + with the fellewing pestulates
(N obh=0 (20 1®1=1 (3) 1«1=1 (4 0D0=0

(5) 1s0=0s1=0 (6) 0®B1=1@0=1

preve the fellewing theorems of binary Beeleanm algebra,
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@ (xey) =x x®y

=y®x
Ix] 7| (xey )| =@ ( xey ) Xy *x®Dy|yDx
0§ o0 0 0 010 0 0
o1 0 0 of1 1 1
111 1 1 111 1 1
11} 0 0 1 110 1 1
Since the first and last eelumn Since the last two columas are
are equal the statement iz true, equal the statement is true.

2({ Let 5 be the set of all people im the werld.

(a) 1Is "youmger tham" an equivalsnce relation among the elememts of S?
No because a is not ypumger than a,

(b) Is "same age as" an equivalemce relation among the elements of S?
Yes, because a is "same age as &, 1f a 1s mame age as b then b is

the same age as a, if a is sgme age as b, b iz the same age as e,
then a is the same age as c,

3. Suppose we are givem the set of a1l pesitive integers and an operation
( * ) defimed in the follewing way: & ¥ b = a + 2b
Determine which of the laws mentioned im this section hold fer this

eperatiem;  4%3=4+6=10, 3%,=3+8=11; ,*(3%2)=4¥7=4{+14=18,
(4%3) #2=10%2=1044=14; the camcellatieh law helds,

3" 2 ¢
L. Suppose that A= [% ?] B= [L; _?5-] and C= [._’ -]

(a) Verify the asseciative law for additien. ﬁ+(3+g) = (R

BN

v o] [eea
|2 5] " 12 ~§

-

R)+Q

(b) Verify the sssociative law for mltiplication. A8 =(ABR,

a 3| Tvoas| _[-i af|Ts @
o | o2l ) 3 - -y
._3' -37 - “‘3\ -
o291 2
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(e) Verify the left distributive law for metrix multiplicatiom with
respect to additien. /(Bic) =AR-+pc

la-31T6 /s 24 T
o ( ’9- -4 B L3 "-'.S— +\__l—(
AL

LQ -6 LQ-"é

(d) Verify the law which says ¢(AB) = (eA)B using ec=3.

3 S|l 3|13 s
2 & ] - \'3 ?7]
9 ~s | Ly

5. Given the operatioms of + and (,) over the aet of all even imtegers

(a) What is the ideatity fer +, if any? I=0

(b) What is the idemtity for (.), if any? I=1

(¢) What if the imverse of an even imteger a for +, if any? -a

Sga What is the imverse of an even integer a for (.), if any? none,

6. Let sn operation"ec" ever the set of imtegers be defined as fellews:
gD b=a+b-2.

(a) Which imteger is the identity elememt for "o"?
e0X=ga,at+tXxX-2=a, XxX=2.

(b) Which integer is the imverse of 3 with respeet to "o"?
3ex=2,3+x=-2=2,x=1,

7. Determime which of the fellowirg sare exsmples of fields. If they
are not fields tell which pestulates de nmet feld. Let the operatiens
be + ard (o)u .

() the met of all integers; mot & field because sach element dess not
have an iavsrse,

(b) the set of all ratienal numbers; yes it is a field.
(¢) the set of all pure imsginary mumbers; =o because it is net clesed

under (.), the id me identity element for either eperatiom, and
re imverse fer either eperatien.
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CHAPTER FIVE: DETERMINANTS,

The determimant of A = [iii] n is the sum of all terms of the
form (-1)ta131 852 SR ayjn. Where the sedemd subseripts assume all
pessible arrangements in which each éolumn is represented exactly once
im each term of the sum, and the exponet, t, is the mumber ef imterchanges
necezsary to brimg the second subgeripts imto matural erder ( that is
152, 3, « « «n ). The miner of an entry ajj of a square matrix A ias
the determimant of the submatrix eof A ebtaimed by deletimg the ith rew
and jth columm. The cofacter of am entry ajj ef a ®mquare matrix A ls the
product of thé minor amd (-1)i+j. This cefactor is demoted by Aij'
The determimants of a matrix snd its tranmspese are equal,.iThe determinant
of a matrix with two identical parallel limes is zero, The deterginant
of the product ef twe sqﬁare matricqsﬂéf ghe same erder is equal to the
product eof the determinmants ef the‘tﬁe matrices,

Accerding to Cramer's Rule Af the det & # O, them the system AX=B
has exactly ome solution; This sclution is xj = 3:2 AgiA) , 1=1,2, .. ;;

The rank of a matrix is the order of the largest square submatrix

whese determinsnt 13 not zere. When all of the entries are zero the rank

is zZere,

EXERCISES:

T. Evaluate by defimitien: ( ) Q419=20
a 3 = [-\°9. -/ { o~ )= 21T =
(a) I—a |~I G-l +61)'G) a2

=0~
(0 [7%[= 004 +NEDNED=0

2, Clvenh= |3 2 :fl
-] 4 ©
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(a) Expamd det A about the first celamn. |
A= aeo | 3 ser| S cow| 2 2 Pms@-de e =

(b) Expand det A about the third row.
ﬁl -1 (~:)'ft'm\ 44 (—1)5\ \+o T -6~ 4(4) ~b—1t= —aa.

(e) Expand det A about third celumm.
ﬁ\"” o +ac-)° fli‘ = —a(g43) = = AL)= T2

(d) VWhat is the cafaet@r of the entry in the third rew ard gseecend

Loolumn? C_;}f = ()=
(e) Wnat is the miner of the entry in the first rew nnd second ecolumm?
xS

l-——/ol - CD42~) o
3. Evaluate det A by row or celuma expansienm,

ED ¥ 2 0 . 3 2 0
3 o 2 o+0+20-N5 |3 2|46 - 213 o 2=
R;\:DS—-EDA‘MA )‘173 2/ 3 -
2 o | 3 B
’Bxda. # : = - —50) =
*2526023;\M%G’f\glgzﬁﬁc‘i)"ﬂ@j 0 (-39 = 29
-
Le Verify: o |
0 2 w‘ l _-;o
A= 149 -3 2 4
9 —2 1 3

(ot 2 a(~( ’3}34!
L o gt e
d@tA: 040+:LC~(_) a = -\t ;C-]) -3 2 Y

-2 13
~| $‘
)% g 92;(«1) ‘+L~l)3’ l*(” o)
3 3- (aﬂ)- (o)t (a2 =35 - (-2 - (ED 4
n (o-4) - 2(a-5H+) = (-0 —N(~)=0
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2.

Determine whether the matrices im the first problem are hongingular
or simgular,

dot A= 244206 Ir\w\.smﬁula&
det R= ~(3-2)=0 SiNguisk,

| 0
3« Given the matrix A show that det(ade) (detA)z. A= [? 2 ’.]
e 3

cofb=|h 5 TS| adihe[¥ 2 ° 2

R Y S
dot A(aédf\:)‘-‘ 0ot L 20— 1) + C4+3AD W) £ 337 984337 |2
(Je'(‘ﬂ)lz /) YEYEYFY, X
| et lady ) = (deth)

Caleulste the inverse of the fellewing matrix and check by AA-1=A—1A=I.

A [2 ol CATA':E ‘ZJ adfA= “‘] detf= aB3)+ 4=
ate [ el Y e

5., Using the follewing twe mateices illustrate (AB)'1=B';1A'1
T
¢ -l co=1 727
cofp=[¢ T adjAll j deth = ¢ cﬁecb 3] «%Bﬂ[,] 3] ditB= |
A‘l [9/ .;/4] B-‘lzg‘l_( /;
eec]d ] cof k)= 2] i <[4 |] detth)=¢
(asy = [ 1 Ll e [h % ] ()™

6. Solve the following systems of equutiens

wowst Al el .y
cot A=[:" ] adyhe [ 7] dsthe T8 4 //&,]
PR AN

)4:3/%
o= T
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CHAPTER SEVEN: ELEMENTARY MATRIX TRANSFORMATIONS.

Three opesrations are defined for matrices., They are: the inter-
change of samy twe rows, te multiply amy roew by a nemzero scalar, to add
to sny tew a scalar mmltiple of amether row, :These are called elémentary
tow eperations, Elememtary eolumm operatiens are defined by replacing

the word "rew" by "ecolumm". Wher a matrix has beer reduced by elementary

r

g e e

L o 0|0

0 1 s o

¥
eperatiens te ene of the forms: [ I [Tr: O] I, : 0 Jor I, ( r= ramk)

we say that it has been reduced to normal ferm,

 Miitrices afe equivalemt te amether whem they have the same ramk.
A matrix is am elementary metrix whem it cam be obtainred frem the idemtity
matrix I by an elementary operatien. If two matrices A and B sre equi-
valent, them there exist two nemsinguler matrices P and Q, such that
A=PNQ. If A is nomsimgular and if the matrix [_A' I] is transfermed to

)
the equivalent matrix [ﬁ ’ é} by elementary row eperatiems, them P l1s

the inverase of A,

EXERCISES:

1, Usimg elementary rew eperations, write am echelen matrix which is
row equivalent to the given matrix,

{ g g afI A | 4 3 -2] " f4 3 R
Li7slme L3 dln,e 83 2]
S a a1 2, A
VI P 0](1/ [é?‘f?/ f)lﬂ\) I‘,’?‘“%’ P]
sRathy Lo 5 -9 g Lo o ¥ 2k Lo o (0 T

2. Write the'augmented matrix for the feollewing system anditramsform it
inte an achelen metrix by row eperations. Then write the zystem for
vhieh this echelen matrix is the augmented matrix and find the selutilenm,

T [ e gl g ]
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X"Lé__ =3 =1 }(=$71,
oy

S P Y-
3. Witheut imterchanging roews, change [31 to [, ; in four
gteps using elementary row operatiens.

e, 3305 B8], B 1% [73

Le Find the rank of the given matrix by reducimg it to normal form:

3 :L ~(1 i' ] ,l 2 3
7 *’ o [" J [ e 7
[v ¢l L KRy Lo —@,@ > o
--'/ & 3 ?"" 0 l ) o}
Vv o @ =5 J Qo 9 J (: / J
-»4@1-(% [a 0 o Q’f; Ry 0 o ’C( ©0o (’_é“)C 2 é &
3¢+ Ronk = 2
5. Write the elementary metrix E which performs the indicated elemeatary
transfermation on A= C‘ﬂ 21 ,‘J Thern multiply to eobtaim the

deasired transformation,

(a) Interchange the first and second hews.

BT R TT

Imterchange the first and third celu@ns.
! 3 2~! : :L~
E [ A= NI [l
7o ‘7} o l o

6, Uss the foll@wing matrices and find matrices P and Q such that

A=PRQ. = [3 ‘/J A= g?]

“Sewli 2z, 5], U7

A Sk, [ 9’/»- TR AL

"3RS _ / 2 [j/ ~3

A { =2 - - [o /j o J
«QQ¥QL = Z} f
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7+ Find the iaverse matrix by elementary operations,

- 3 [ l 0
B = 3 Al = { 3 ‘z ! OJ | [’_ y ) I
®) k= [q 01 [A ‘I] [ﬁ o Yo R IR, 0-12. \=4 |
N ¢ 310 s j 610 ¢
.,7_(1 Rﬁ [_0 IR //3 *-%)_ [- g‘ ,/3 /"f}

’RR,_‘!'R‘ o i "‘(/,;L
- 0 l/
A ['/3 *’7»1

I ' {1 0 3'0011\.} \rﬂaq
] - ¢ 2] f

&) A= KB ] o‘g LA‘I] (_3; L% ‘3);/ '3R+Rn. o
1 [s) 0
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CHAPTER EIGHT: GSYSTEMS OF LINZAR FEQUATIONS,

If AX=B iz a matrix equatiom representing s system of equations
and B=0, the system is called homogeneous. If B#0, the system is hetero-
geneous, The system of m linear equations in n unknowns may: (1) have
no solution snd therefore be inconsistent, (2) have exactly one ( unique )
solution, or (3) an infinite mumber of solutions gnd therefore be consistent,
& system of limear equations AX=B ig censistent if and enly if the rank
of the sugmented matrix is equsl to the rank of the coefficient matrix.
A consistent system of linear equations AX=B has a unique solutien if and
only if r=n,( where r is the commen value called the rank of the system).
Homegeneous equationg are alway® consistent because the ranks of the
coefficient and augmented matrices are equal, |

There ig a mesns ef determimg whether r exists and if so whether r=n
while at the same time working toward a solution. This is called the
echelen method, The first atep is to transferm the augmented matrix te
an echeleon matrix by elementary operstions., The echelon matrix may be
used to determine r and transformimg it back te a system of equatiens will
make substitution to find the solutions easy. If the echelon matrix reveals
that there are geors everywhere in the last row except for the last column,
the system will be incensistent, With systems that are consistent but
have more tham one solution bme can find the compleste solution by ex-
pressing esch unknoun imtterms of one of the otherm, A particular
solution may be derived frem the complete selution by substltubimg
alues .for the paramster, The Gauss-—Jordor Elimiration Method is some-

times used where the echelon matrix is further trensformed to create a
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submatrix Ir. This is augmented and them substitutiom is used,

A eensistent system of limear equations of rank r can be selved for
r unknowns say Xji, Xyos o o X4, in terms of the remaining m-r unknewns,
ifrand enly if the submatrix ef coefficlents of Xiq, X4yp, . . «X4ip has
rank r, In a consistesnt system with more umknowns tham equations and
the complete selution is found a basic solution can be found by assigning
the parameters the value zero, The unkmsuns or varilables not serviag as

parameters in s basic selution are called bssic variables,

EX o, ISES s

1, Dete__ime wh isrithe owip iystems sare inconsistent, consis-
tent with & unigue selution, or consistent with an infinite number
of solutiens, :

: : I 4

@) ¢ Ko+ 3 vh3= A P T R - PR S R ’]

s { ‘ "( .I 2. q o [
X, + X,_"Xs { 2 4 o -
X, +4X,

7 g

= ((¢) ~ 1(~4) yat-3-p =0
2] 1 G)-uay)y = —2  Rank A=2
7‘-: ‘(0)-—[(0)4'90'“4)‘/0 Ravk c= [0 2 FElo
< Qq [+] :

Therefore, the sy m is incensistent.
= - - : t ~1 ) l h‘
(e %~ X, te=o ﬂ’=,' i B‘—'[é] EI“;B}*{: a ,e.-}
X, t2X, — 5 =0 3 3 4 23 4

FX +3k, ~¥=0 {/ f//

i 2= 2t/=3 Rank A=Z

det [A 18] L(8~1$D S I(4H18) +3(5H)
| = 7 7 - [Cf +a/ = o
Rank [GX Bl = 2

Therefore, the gystem is consist aad hi. a unique splutien, r=2,
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2+ Verify the follewing system is incomsistent and them sketch the graph
of the equatiens of the system.

X 4X,=4 [0 oo %
X'“XZ:O A:K.C,) 'l [ﬁig] “Q ,( g
XK. =3
4= e pekene s

fAf"B(? [(-3)-1(3~4roe —34/= &
| - RankKk U‘iBl’jj 2#3

Therefore, the system-is imconsistent,

x-l

AN

3+ A trucking company ewns three types eof trucks, mumbered 1,2,and 3,
which are sguipped te haul threes differeat types of machinmes per
load accerding te the follewing chart.

Ho, 1 rRe, 2 RO, 3
Meachines A 1 1 1
Machines B 0 1 2
Machimes C 2 1 , 1

How mmny trucks ef esch type should be sent to haul exactly 12 of the
type A& machines, 10 ef the type B machines, and 16 ef the type C machines?

X, +Y, thy =/ [{ SN B
= 2
=~ 4 2 TRz ’
Y I! ;! /&J X,‘\"X:.'f")(j»:(‘;‘ X3=Q' fYa.:é,Y,:‘?‘
/
v]

Ko XX =1 O _ _ .
2UETS ARl Wt X3
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4e By the Gauss-Jerdsm elimiration methed or the echelen method, .
determine whether the system is consistent smd has more than one

solution.

X,‘+X1*><3=‘7L [ B BT U /A |
g&“xkjﬁtz~ ['” | l]»MmQL~u 4~7J
r Ly ¢ o 03
."«i:L-R',_ [o / j-')? +,€ 1:

S’(’)/ =3 | ? X, = 3+40X, |

_ )/ >% J y,;.: XQ-F/ )

5¢ 1In the fellewing cemsistent system, cam we selve for Xq and Xp

in terms of X3?

R T L Ch PR VR B Y l_(f%)"*éfg"c’)"‘o
X, X, =2 -t~ 0 | ] :

2 2 x
// //354/:/
“ 0| ¢

n =4 oo
Cl::Zj;; J/ } = €bo€%u;\CAe4m*“ HA£F¥RAX. s%)k %1;Y9~,

QX +oX, tAX, =8

o) = ¢=2) 4570

Since the rank of the ceefficiemt matrix does not aqual r we cam not
golve the aquu&ieum im terms of Xg.
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CHAPTER NINE: VECTOR SPACES.

A set of elements forms a vector space if: any two of the eiements
car be gdded in a unique way snd their sum is also an element of the set,
any element brof the set can be multiplied by an arbitrary scalar s to
produce a unique element sb of the set, the lawgcliste eler eeidatis ed.
If a,b,c represent arbitrary elememts of the set and r,s represent arbitrary
scalars, a+b=bta, a+(btc)=(a+b)+c, and there exists am element O in the
set such that s+@=a)~theri xiskérkn edement:ws in the set such that
a+(-8)=0, r(a+b)=ra+rb, (r+s)s=ra+sa, r(ss=(es)a, there exists a scalar 1,
known as the identity elememt for multiplication such that 1.a=s.

If <f o, oof, o are vectors and kq,ko . . .k, are scalars, the

vector )=«

) Koty o Ko, is sgid to be a linmear combination of the veetors

Of, S 1 gy A set of vectors o5, -cf, is sald to span a vecter
gpace provided that they beleng to the vector spmce and that every veetor
in the space can be expressed as.a linear cembinstienr of £hem. The n
vectors <, oy, -e, are said to be linearly dependent if there exists s

set of scalars ki, k5 . . .k, net all »ro, such that Ke(7fe(+ . #.0h =0,
A set of vectors of of, ..o,  Which is not linearly depemdent is said

to be linearly independent. That is if of of; <o, are linearly independent
and if Kpf+ Kiog-khel,, - m kq=ko= . o ky=0, If the mumber of vectors
exceeds the nmumber of compenents of the vectors invelved, then the set of
vectors must be linearly depemdent. In order for a zet of vectors to span
n~dimensional space the set must contain at least n-vectors., A vector
space is said to be genmerated by a certain set of ctors &f the bector

gpece congists of all of the linesr combinations of weetors of that set,
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EXERCISES.

1. Determipe whethar the fellewing sets ef vectors are limearly
dependent or imdepdrdent.

) (o "), 42 K3 -l) HK (Tha)se 52Kt =0

K'+‘;*K2,IQ

[/ R. +)? oJ RAR, [o 0 oJ %kf—-;zga-:,a
They are limesrly dependent,

() €310), (132), (671 KGR 13,D+k,0

| K¥K> , =0 21 00 p [( ~2 ~f 0

> 0

(i [Fa78ae L1

.DJ(;_%—K =0

.2 ~¢ 0] Ty =3 =7 o
AV g s OJ A [é TR 7/ o} rJ W2
“RtRa {0 2 f ¢ %R o &1 oAk R,

A
. /~/8/5 o\ P LO 5 8 ZI
> 0 ‘"Ks“ 0 %/ 3 L° 0
K “AK:, 71«3‘70 K=o
Ka +1%ty = 0 P
K= @ Ky =0

They are limearly imdependent,

2, Whiech of the follewing sets of vectors are not.a basis of the vecter
.space consisting ef 8ll three-dimemsional vectors?

@) [LKVH:%} X, 24,7 @ T a0
R 13 L DK*DK_,_~ 0 © 0 P

‘ X, + X *X I

;,266) o 00 I 20 ¢

i 0 0 ~| o | NV [o!«l '01

)V¢ L}OOC’ -—R*}PL b 5 D’a _.—R’L 0 0o 0 0
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A X =0 %XI =_ A

This system is not a basi$ beéause it is not limearly mdapendent nor span the

h) aX + Xy {;4 / o‘l N Q A 1(}7%@ space.
= [ 1o 0
N U L Z $ e YR s 1 o hoRieR,

I

[ //_-2_ 0} [/ y ol T
v} l/ 0 \J S In} [ﬁ /J.
4 0 o) ar, L& > KA Ry s A\ o /Qﬂi;e

: . ‘
E) ﬁ g} ' &*ékifo X, Xy =0
6 o o X,T0
Thls system is not a bagis beeause it dews mot sparn the vector spsce.
CC) 3 I XTX+)(3—O ‘
/ . S S
o3 LodqaX,t Xa T 0 2 ( o o
—- { O o
'XI el O
37 0 ! )0 (31 0
ww EEHERALE(
370 | ) g o od KRRy L0 -y~ @ §/€3 0 /5y o
Y/‘t 3X1‘(‘)(3‘O x):O
X;z o XLL:O
L
X:L+'3'K3“'C) X. T ¢

Thie system is a basis because i5 is linearly imdepemdent and spans
the vecter space,
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CHAPTER TEN: LINEAR TRANSFORMATIONS,

The trarsformation of the elements of ome set inte the elements of
another set 1s semetimes called a mappimg. In mapping the elements of
set U imte the elements of a set V, the set U iz called the demain of
the mappimg. The set V is called the range of the mappimg. A trams- ' .- '’
fermatien ef vectors iz ealled a matrix traansfermstiorn if it e;n be ex-
preased by multiplyimg the vector by a matrix, A tramsformation T of a
veetor space V imte V is said te be a limear tramsformatien if TEY + /E)=
Tley) + T( )3), and T(KX')=KT(x ). Every matrix tramsfermation is a limear

tranasformation,

EXERCISES:

. T,
1. Determine the matrix A such that # Ts gp =kf where 8 ”'[bj

Tk o
A=K o1
[ax]
2. Determine the imsge of O™ (R, umder the matrix tramsformation
of —L5 AX for esch A, and describe the geometric effect

of the tramsfermatien.,
o= LTt ALl s

® "4:[‘;‘ 3] i‘ f] f&l S ;a,,] slides Fermina) }DOI'N+ +wo

o . \
T Units o X, AX(s.

3. Shew that the folleowing tramsfermatien is not limear,
(a,b) T (a,2) or T(a,b)=(a,2).

YK cabd>§ = CKa, 2

K75 (e k) = KA, 2)= (Ka, 2K )

T WD = T feart) hed)§ = Carea)
[ XTHSTS +’T§C,,<1)E < (8,2) He,a)= (ate,4)
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CHAPTER ELEVEN: CONVEX SETS,

The fellewimg are properties of limear imequalities:
If a>b then a+tn2b+n ( or a=a>b-n); If a>b and n>e an>bn, and

?.h 3 If a=b and m<0, am<bm sand & < b.
n

=le
8
B

An lmequality which fails te be true for certaim values of the variables
invelved is called a conditiomal inequality. The selutipi is the set of
&ll values of that variasble fer which the imequality is true.

A Set of peiats im m-space is said to be convex if. fer every pair ef
peints < 2 im the set, the line segment jeining these peints is also in
the set, A set is cemsidered te be cemvex if it econtains fewer than twe
peoints, The intersectlen ef twe or mere convex setz is ceavex, A linear
furetien f= k1x1+k2x2 defined at every peint of a comvex pelygen assumes
ite mimimum amd maximum values ( for the pelygon) only at extreme'points

of the comvex pdlygen.

EXERCISES:
1, 8Selve for x: 6—3X=/% Y& -
“3X2Z2¢
2, Find any superfluous inequalities in the fellewing set:
XX s Xt X, <o ¢°7D€R*Huou,5 X

]

x(1~xl ;a \
X Zo 1
l Xoo X . §\

3. Selve for x: L > ';’*-—')?—X
X ax—x* Yoa I-X<o ®L X<o [~KPo
7(—;->._£‘5:_' XSo <X Xco 12X
X >ax-X% 1<K X<?
o >(X-X*) erther X<o o X
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smallest of the resulting memmegative ratiés. The rew which imcludes

the pivet is called the pivet rew, The purpese here is teo keep the
entries of the last eeluﬁn mennegative, Step 3, By addinrg multiples

of the entries of the pivet rew te those of the other rows, make all other
eatries of the chesen colums zero., 5Step L. Repeat the first three steps
until all entries im the last row sre nempesitive, Step 5, By using
enly the first two elementury rew:eperations create a submatrix I, in
part ef the space fermerly occupied by B I, o Fart C uper preper

interpretutiom of the resulting equivalent matrix will yield the selutien

t

te the maximum preblem, R'Z and mimimum CX. Im the matrix obtaimed

-Xt eccupies the pesition formerly eccupied by the mullvector. To find
Z examine each columan to see if it has the number 1 and the rest e's,

if it does them the value of Zj for that celumm 1 is equel te the last
entry in the same row with the 1. If it is met such a celumn the value
of Z,=e. To find f eonsider the emtry ia the lewer right hand cormer of

the firal matrix., Set it equal to zero aad selve for f,
EXERCISES:

1, Twe oil refineries produce three grades of gaselinme A,B, and C, At
each refinery, the various grades ef gasolime are produced in s
single eperatiom se that they are in fized prepertiens, Assume that
one operatiem at Refimery 1 preduces 1 uait of A, 3 unriis of B, and
5 unite of C, Refinery 1 charges $300 for what is preduced in ene
operation, and Refimery 2 charges $500 fer the produection of ene
eperation. A comsumer meeds 100 units of A, 340 units of B, and 150
ukits of C., Hew sheuld the erders be placed it the consumer is teo
meot his meeds meost ecenomically?

T Un;
} "Z N;;—J;SG{)
’ H ! ] /o0
B 3 Y 4o
[ ! 5 150
Qgs'r R Y300 '¢<~5~OO
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3. Selve the fellewiag by the simplex methed.
(a) Maximize f=zq+22, subject to "TZMZL& Y“ Z 7o

Z, 44z, =7 Z,Zo

3’[;( ” ¢T°[1}L] RT=[ 2] z:[;';j

I AP 'f\(’Q\l/- /o‘féii?'s\?
[“1:/- WA ? ) 0*3{# (43 K4 2 f_{j:(ﬂ_:lﬁgxi_
AESRP e I Y PR v o I SO ERSS A A TR
R, 4R “LRAR,
1o (55 \S f-¢
N -t : - = % Z < -
LR 9,’,§r§1§’”§’\, S ’Qg é X Y5 /
30> oo\ =% s f-s
(b) Maximize f=2zj+zp+bz3+z, subjedt te [ Z, #3532, »Z +ZE j go
<, +Zy 7P 2Z, 55 2559
z,?Z 43 Ay 2o
¥ 2 1)l e oy (3 (1T 0y
I o | 2101 9 5 ey, ow3a-—\,;/o,-7
O 2oz | gp |2 TM. o0 te 0y o
2 /) 6 109‘)&!;' *a’l,é,h? @,54%~/ 2. 0 0 \Q..g
' lap (o2l d
[.20\/'/00()3\ O..;oo’\ola\\j
Voo b -3 0 10 Ll g 10 00/ Y&
ST 6 1L 0 3p e ) ?@ﬁ?-; -9 0~ [ d/’T-Y"/é
- = e T
> :
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