A Study of Computers and Computer Programming

Janet Moffett
Ouachita Baptist University

Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses
Part of the Computer Sciences Commons

Recommended Citation

Moffett, Janet, "A Study of Computers and Computer Programming" (1968). Honors Theses. 401.
https://scholarlycommons.obu.edu/honors_theses/401

This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Honors Theses by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact mortensona@obu.edu.

A STUDY OF COMPUTERS AND COMPUTIER PROGRAMMING

A. Raper
 Presented to
 the Department of Mathematios
 Ouachita Baptist Univaraity

In Ful゚illment of the Requirements for H491, Honors Special Studies

ky
Janet Moffett
May 1968

Camputern haisse become a great aid to scientists and businesmmen. Their speed and accuracy has enabled much progress in many flelds. Although computers are apable of many tarke, they are dependiant upon the programier and can only do what they are told to do. Oomputers are based on logical amganization and act gecoting to orgainzed data.

The Iogicil components of most computers are
(1) Input
(2) Internal Momory
(3) Arithmatic Section
(4) Gonsole
(5) Automatic Control
(6) Duitprut
(7) Auxiliary Memory

There are many forms of input used by compaters todey " Fame of the most comon forma of input are by tepewriter, punched oaxda, magnotic tape, punched paper tapa, and console switohes. The typewriter is urually used in accordance with other types of input media. It may be used to correct data which is belig reed into a compinter or to insert needed vamables in a stadard program. Punched cards are the most common form of input data and will be discugsed in deteil later in this papar. Magnetic"tape has its mejor function as form of internal memory. It has a disedwatage in that data must be stored in some specififo order. It has the advantages of peed and ease of handing. Punched paper tape is gomewhat of a cross between purchad cards and magnetic tape. On magnatic tape, data is recelved or reconded
through electrical impulses on the tape. Punched paper tape records data by punching holes in the tape like those of punched cards. A sample of paper tape in illustrated below.

Punchod Paper Tupe

Paper tape does not have the speed of magnetio tape but its data is easily transferred to punched cards or can be transmitted over teletype. Console switches are on all computers and permit the operator to enter information directly into the computer. This form of input it very slow as ompored to computer speeds and is used only for exceptional situations.

The internal memory of a computer may be compared to that of a file. It stores data and brings it forth when needed. The data, however, is stored much more compactly and may be found in a much shorter time. There are various forms of internal memories. Magnetic tape has already been discussed. Similar to magnetic tape is the magnetic drum. The drum, which I. cylindertcaly shaped, revolves thousands of times perisecond. Read and write heads are located above the drum surface as shown in Figure 1.

Figure 1
Drum Reconding

The computer may read or write information on the drums. The drums are organized into bands and futher into tracks or words. Each track within each channel may be called upon when needed. The arrangement of tracks and bands is illustrated in Figure 2.

Figuxe 2
Design of Drum Storage
A very common form of internal memoxy is the magnetic core. The magnetic core is a tiny ring of metal a little larger than a pinhead. Two wires intersect the core, and a third senses the magnetization of the core. Information is recorded by magnetizing the core in ejther a positive or negative direction. The magnatic cores are arranged in a grid pattarn (rigure 3) so that current flowing over the wires will change the magnetization of only one core. Each grid of magnetic cores is called a core plane.

Pigure
The magnetic disk is also used for internal memory. It is not ordinarily employed as a primaxy internal memory but is used to supplement the capacity of computar. Hach record shaped disk (Figure 4 contains tracks on which information is recorded, A double-headed access arm reads and reconds data on the disks. The disks are arranged one on top of the other and the access arm move up and down a rod by the staok of disks to read the different disks

Higure 4 Magnatic Disk

Figure 5 Disk Storage and Access Am

Internal memories are limitea in capacity. Auxilaxy memories may used to expand the memory of the computer. The auxilary memories are usually slower and less expenalwe than central memoxies.

The basis for nearly all internal mathematics in compaters is the binary aystem which uses a base of two. The binary code permits the recoming of numbers by the presence or absence of magnetic spots, holas, lights, or electronic impulses. The absence of a hole or magnetic impulse would mean 0 and the presence of a hole or spot would indicate. 1. Since 0 and 1 are the only symbols used in a base of two, all numbers may be recorded by the presence or absence of a hole or magnetic impulse.

The control console is used thentact the computer during it work cycle. It is composed of a series of 11 ght , switches and buttons. There are various automatic controle within the compriter to keep information baing reoprded from being confused with information previously recorded and to prevent the recording of incorrect data. The 'automatic controls turn over control to the control console when some misstatement or melfunction has been detected. The error may then be corrected through the control console.

Output forms are much the same as inpat forms, however, there are more output forms in use. Some of the most comon output forms are typewitere, punched oards, magnetic tapes, punched paper tapes, magnetic disks, movie sifme, television tubes, and printers. The mopt widely used method of outpot is the printer. It has the advantage of presenting data ready for use with out additional processing before it can be read by an arage person.

A number of computers which have been developed use the punched card as a means of recording and reading data. Machines which soxt, read, merge, 1ile, and record punched cards seve tedious clexicel effort and money and work accurately and rapidy. There are several typer of punched cards. The

IBM punched card, which is most widely uged, has 80 columns accross and 12 rows down. The 12 rows consist of figures 0 through 9 and two rows above the figures which are not printed on the cards. Below is a typical punched card.
0039750008 ATKINS 037031068 x

[^0]
Punched Card

Figures are indicated on the card by punching out a rectangular hole over the number indicated. Latters are indicated as follows: through I are made by a punch in the top row and a punch in the number that letter is in the alphabet. J through \mathbb{R} are made by a punch in the second row and a punched number of the letter beginning with J as one, $I \mathbb{I}$ as two, etc. S through Z are indicated by puaching the 0 row and a number two through nine with S as two, T as three, eto. 具 punoh in the first row may indicate a plus, the second row a minus. Vaxious other symbols may be made by using the first two lines with the numbered lines. A key punch machine is used to prepare the punched cards. The keyboard of a key punch is much the same as a typewriter with the numbers arranged on the right like that of a ten-key adding machine and operated by the right hand. The cards are read and sorted by sorters by

IBM punched card, which is most widely used, has 80 columns accross and 12 rows down. The 12 rows consist of figures 0 through 9 and two rows above the flgures which are not printed on the cards. Below is a typical punched card.
0039750008 ATKINS $037031068 \quad 1837 \quad \mathbf{x}$
-00
 1111111111_111111111111111111111111[1111111111111/111111111111111111111111111114.1 22222222222 二22 222

 55555 5 5 5 5 5 555 5 5 555. 66[666666666666666666666666666666666666666
 888888888~8888888888888888888888888888888Е88888888工88888888888888888888888888888

Punched Caxd

Flgures are indicated on the card by punching out a rectangular hole over the number indicated. Letters are indioated as follows: A through I are made by a puroh in the top row and a punch in the number that letter in fin the alphabet. J through \mathbb{R} are made by a punch in the second row and a punched number of the letter beginning with J as one, K as two, ete. S through Z are indicated by punching the 0 row and a number two through nine with S as two, I as three, atc. a punch in the firgt row may indicata a plus, the second row a minus. Various other symbols may be made by using the first two ines with the numbered lines. A key punch machine is used to prepare the punched cards. The keyboard of a key punch ia much the same as a typewiter with the numbers arranged on the right like that of a ten-key adding machine and operated by the right hand. The cards are read and norted by sorters by
sensiug electrical impulses through the holes in the cards. As a card goes through the sorter it passes between a copper drum and a row of electricul brushes (igura 6). An electrical current is completed when a brush contacts the drum due to the hole in thio card.

Punched cards do not actually go into a computer: They are read by a special card reader which converts the sensed holes into current which travels along wires to the computex. The messages are recoiwed inside the computer and converted to magnetic spots or magnetic fields on special media.

The IBM 1620 system uses punched cards as its principle means of ingut and output. The data is prepared on punched cards and manipulated by instructions stored in memory in the form of numbers. These numbers move into program registarg where they are broken down into an operation code and data addresses. The operation code tells the computer what is to be done with the information. The data addresses tell the computer where the information is located in internal memory. The results of the computations may then be transferred from general storage or the product area to the card punch and punched out.

The 1620 uses a magnetic core storage for internal memory. This permits the use of variable word length and permits exch digit of infomation to be addressed individually. The internal memory of the IBM 1620 requires 12 planes of 10,000 cores aach. The memory module is axranged so that each
digit of information will be represented by six planes making use of six cores in a line perpendicular to the planes (Figure 7). Six cores, one in each of six planes, are required to show one binary-coded decimal digit.

The culy items which ore bered in compters are numbers．All iettexs． must be designated by a numerical subsitute in arder to be put into menory． A12 instructions are expressed in terms of decimal digits．These are 14 coded operationa which the 1620 aystem can pertont Each decimal dieit in storage must have a location from which it ean be ealled up as needed，The 1620 hag a twa－address instruction omat．Pach address consists of five digita．One addras is alled the F address and the other the Q adrems． The two five－duat addresses wh the two－digit oparation code require a twelve－digit thatmetion format．A menonic code may follow the address to atd the programmer．Thid code is not recorded by tion mamer．A伹pleal program to and two numbers which are already in etorage would be：

Code	Paddress	Qadiress	Mnemonic code
21	15550	16660	A

The code for addition is 21．The numbers to be aded ane located beginning gt eell 15550 and eell 16660.

Since the 1620 uses a magnetile core memory has variable word length， 1t must have a method of destinnting the beginning and and of a werd．This is accomplished by use of a flag bit．Inside the memory of the computer the
 represerting the muber in storage．The progremmer represents the flag bit be placing a den above the decimal nomber．直fleg bit at the left of the word denotes the beginning the word．A flag bit at the might of the word denotes that it is negative．Intomel transmiselom in the pomputer is from Fight to left．冓herafowe if there is a flace bit at the addressed digit，the coliputer assumes the number to be negative．The eanputer then proceeds to the left until．At encouters a flex bit denotive the end of the wield．The
 pud tranamision or from external devices．In input dates fleld marke
are ignored as lifiting devices and a record mame (t) is uged wisbead. Field marks are included in output data, A record mark is repmesented on a punched.

The 1620 contains the adaltion and multiplicathem tables and refers to them for enswers to wericus parts of problems. This gimplifles the componcul requirements of the sybtem and increases the ppeed and mimpliatiy of control. The matiplication table occupies storage cells from 00100 through
 or sulletraction problens, the enswer is stored thethe P edress which was accuplec by one of the factars in the probleni. In multipletetion or durision problems the answer la reconded in section of stionge oniled the product area. It is located in cells 00080 through 00099 . The product area is thtomatically cleared to zero the multiply and divide commends. The Ioed area of the 1620 Intimal memory extends from cells 00000 to 00c79. This contains 80 decimai digits which is equiwalent to the size of the IBM pronebed card. A cand is reed into the computer and the computer automaticeliy proceed to 00000 for its first instruntion.

Progroming a computer firgt involves stating the prowlan and defining a step-by-step procedure for solying the problem. In order to do this the computer must be contacted in a language which it understands. "Portran" is a. Ingurge devaloped in which procedure can be radily and counately exprased. It is a procedixa-oriented Ienguage made up of a mall group of statement typen. In formulating statements, the rules and regulations which must be followed are malogous to the grammateal and ontatical mules of Helleh. The chiracters used by Fortran are all numerical characters 0 to 9, all
事 $-7=$ 。

Each step of a procedure is a statement. A program consists of a string of Fortran statements. Statements which supply information about the procedure to the procesaor are known as declarations. Whenayer one statement must be referred to by another it is given a numerical label. A typical Fortran program requiring the selection of the largest number in a group of numbers Is as follows:

Label Statement or Declaration

DIMENSION $A(100)$	Dealaratan
$Z=A(1)$	Statement
$D \theta 20 J=2, N, 7$	Statement
IF $(2,-A(J)) 10,20,20$	Statement
$z=A(J)$	Statement
CONTINUE	Statement

The declaration DIMENSION (100) declares that a space in memory must be alloceted for up to 100 items in the collection of alements called $\mathrm{H}=\mathrm{z}=\mathrm{A}(1)$ and $Z=A(J)$ are arithmetio subsitution statementa. $Z=A(1)$ says to place the contents of the ifrat of the 100 locations referred to above into the memory location $A=A(J)$ Instructs the computer to place the contente of
 execute repeatedly the statements which follow, down to and including the one laboled 20; each time warying the index, J, from an inftial value of 2 , in increments of 1, up through N. IF $(z-(N)) 10,20,20$ is a conditional statement meaning; whenever the expression $Z-A(J)$ has a walue legs than zero, proceed to statement 10; whenever it has a value equal to or greater than zero, proceed to statement 20. The CeNTINUE statement marks the labt of the statements under repeat control of the preceding De statement. The word CeNTINUE merely means, do nothing, just proceed from here, and is used to terminate a D θ.

The preceding progrem illustrates characteristics of the Fortran Language. It is 普complete, however, because it contains no provision for entering data
or dellvering the reoults. Input and atput statements are required. han input statement pectries the items of infornation wioh to be traterered from the punched ards or ather input documents. The atatoment also refere by number 数 format code wheh describer the form of the mput wometion. Hor example, a ptatement ordering the computer ta read in the walues of from through Hy would ppear as pollow b

READ N, N, $(A(J), J=1, D)$
The format oode as 11 and the 1 tems are N and Ay for I xunntrg from 1 through I. An output statement specities the information to be punoted on the output card or printed put. Puinting the result from the location z is accomplished by:
PRTMT 21, Z

 The computer uses a different kind of anthmeta for esoh trpe of nuber. Lntegern are used fow indexes in the control of repetition or for identif ation of individual elements. In arithmetic with integern the reults are alway rounded te the nearest intwarew The results al indtexe arithmetio are aways axact valued and never approximations. Floatw poinc numbers are real numbers and are a computer wersion of soientufte notation of numbers. There are two basic extemal foms of floathig point constants. Intermaly, in momy, all eloating polnt constante have the same form, They consist of an exponon and a mandisse. The exponent is compareble to that of the exponent in scientific potation. The manties suppliee the actad
 may be stored using a 11 mited memory ceppedty. Tha deainal polut of the mantissa is always assumed to bo the fir left. The exponent is an integer
code which rapressents powers of 10 . A range from 10^{50} to 10^{+49} can be xepresented by exponent coded 00 to 99 as seen in the following teble,

Sim	Exponpix	Yamaspar	Value
+	51	10000000	. 1×10^{1}
+	50	99999999	. 99999999×10^{0}
4	52	12345678	$.12345678 \times 10^{2}$
-	60	10000000	-. 1×1010
*	99	10000000	. $1 \times 1{ }^{1049}$
$\bar{\square}$	40 00	10000000	- $1 \times 1 \times 10^{-50}$
		,	

Heternally, floatixy point constants may be written in a normal manner with

 notation. The constant contains one or more digits with a decimal point. followed by the expronext.

Fortran Notation

$$
\begin{gathered}
.05 \mathrm{E}-2 \\
-.05 \mathrm{E}-02 \\
.05 \mathrm{E} 2 \\
+.05 \mathrm{E} 2 \\
.5 \mathrm{E} 2 \\
5 . \mathrm{ER}
\end{gathered}
$$

Scientific Notation

$.05 \times 10^{-2}$
-00×10^{-2}
$.05 \times 10^{2}$
$.05 \times 10^{2}$
$.5 \times 10^{2}$
5×10^{2}

A wariable is a symbol or name which refers to place in memory where the value repwesented by that name is stored. A varlable consists of one or more alphapetie or numerical eheracterag the first of which must be alphabetie: and the last must not be the Ietter F. The computer distinguishes between Intager variables and floating point variables by beginning all names for
 belone to aingle class or collection ls known as an array. Each variable in an arrey is an elemant. A string of numbers in a single row or column is considered as one-dimenaional or a linatar array. Each olement gin limeer
array may be identified a linear subscript. For example, the elements of the array A would be represented in Fortran notation as $A(1), A(2), A(N)$, etc. Arreys consisiting of several rows and colums are two- or three-dimensional arrays and the elements are identified by two or three subscripta. The elements of an array are either all flosting point numbers or all intergers.

The speotal characters $t,-$, , $/$, and ** are used to signify the Sollowing:

$A+B$	means	A plus B
$A-B$	mans	A minus B
$A * B$	means	A multiplisd by D
C / D	means	C divided by D
Y**X	means	X^{X}
$A^{* *}$	means	A^{2}

The sequence in which individual terms of axpression are to be evaluated and collected must follow a set pattern. When unaltered by parenthesis, arithmetic operations are performed in order of precedence as follows:

Symbol
昔*
*,
+, -

Oparation
Exponentiation Negation Multiplication, Division Addition, Substraction
$A+B / C+D * * E H-G$ means $A+\frac{B}{C}+D^{E} \times \bar{F}-G$
$A * B / C * D / E * F$ means $\left(\frac{(A B / C) D}{E}\right)$ or $\frac{A * B * D * F}{C * E}$
Parenthesis as used in algebreic expressions may be used to override rules of precedence and to clarify expressions.

One advantage of Fortran is the ease in which expressions referring to functions of one or more variables may be written. To the computer, a function is a separate subordinate program designed to proform a specific task when given the erguments of the function. The main program calls upon the subordinate programs to perform certain functions or tasks. The names of mathematical functions included in Fortran are:

Name	Meaning
ABSF	Absolute value
SQRTF	Square root
LeGF	Logerithm -base e
EXPF	Powers of e
SINF	Sine of an angle in redian
CESF	Cosine of an angle in radians
ATANF	Arotangant In radians of a temgent value

A1 these functions require flogting point valuaty and are oharacterized by
 end in T.

Decisions are made the computer fry teating conditions of mevaral types. Donditional control statements and itaration statementa are the componente of the Fortran language which are used for decision meking. The IF statement is a condtional control atatement and permits control to be diracta to one of three statements depending upon the value of an arithmatic expreaston. The ganeral form of an IF statement is IF (促) s_{1}, H_{2}, It directs the omputer to evaluate the expression (B). If its velue is less then mero, go to ptatement sy If the value is equal to zero, go to statement s_{2}; or if the value is greater than zero, go to statement ghe $_{3}$

The majority of the procedures eoncesmed with numerical computatajos
 controled by the iteration or se statement. The De statement has the form
 tion. I is a variable whose value is to be changed during the repetitive process. I may be any nonsubseriptad intager variable and has the initial
 integar constants or variables and cannot be negative or equal zero. After the first excention of the process the value of is increased ing incrents
of k whtil 14 exceeds 1 which is the limit of the process. When 1 exceeds 1. control is transferred to the statement after s. Before each repetition, the value of I is tasted. If i is lop than I the pxocedure is repeated tmili 1 is greater then 1. "The CenTINUE statement is used to terminate a De loop when the loop oontains an IF statement. The CONTINUE statement is merely a procedural stap Lor the purpose of representing a labled junction point.

Unless otherwise instructed, the coriputer wlil execute ataternents in the oxder they are weitten. The unconditional transfer statement, Ge Te , onables the programer to arbitrarily altar the sequence in which the program statements are executed. The simplest form of a GO TO statement is Ge TH s; s reprasenting the number of a atatement. It β imply means to prom. ceed to statement number a. The Ce TO atatement may also be used for branchang to one of everal.places in a program depending upon the integer Walue of a test location 1. The form of such a statement would be Ge Te $\left(s_{1}, s_{2}, s_{3}, \ldots, s_{1}\right), 1, N_{2}, s_{3}, \ldots, s_{n}$ are statement mumbers and i is a nonsubscripted interger variable which is between 1 and n. The statement Ge IO ($30,42,50,9$), means that control is transferred to the statement Iabeled $30,42,50$, or 9 depending upon whether the value of $\mathbb{K} 151,2,3$, or 4 respactively!

Data for operations to be performed must be read into the computer and the result obtained from the computar. READ and PRINI statements are used for this purpose. Both statements specify the items to be read or printed and refer to a Fermat statement which tells how the information to be read Or primted 10 Rranged. RHAD end PRINI statemente have the fom RRAD If or PRINT f which means read oi print the list 1 having the arrengement described In the POMMA declaration whose lable is

The information to be grinted or read is known as a mit imput or eutput meard. Fach record is made up of on more fielda, field is group of one or more columi whose contentif must be deseribed aparebely. The format

 Sloatije point number with an exponenty and F Fepresembing a flavinge point
 consists of one of the letterp I. F, of F and on intexge indiating the eize of the fiela. In an se F-field an aditional cado dgit in used to denate
 Integer fileld and FMO. 3 denotes a ten-column F-field with the dacimal point. three nIaces to the left of the sight and of the field. on E and Trimpiat flelds, the dedimal paint does not have to be prowad on the data cards but may be designatad by the ffeld speotfucation If the decimal point in pruohec, It owerrides the placement of the decimal given ber the field quecifications. For the program

 60 FeKMAT (32. 4,217

	xxxx. ${ }^{\text {xxxx }}$	20xxx.30cxx	$\times \times \mathrm{x}$	x
x000x. 2000 x	xxxx.xxxx	xxxx.xxxx	xax	x \times x
xxcx. xzxx	2000x.xxxx	\%ox,	8 xax	x $x \times x$

The format is repeated for each line until all the information included int
 seturg the fleld at a grofter number than the digits to be primud in that field. Spacing: may also be accomplished by the use of a skip Ficla. A okip field im Included in the formet code by use of the ppeciflothore mize where
in represent the number of columns to be skipped, Therefore, the precedng
 H.4.4.4.213. 4x, 213).

In prixting an output record, the printer nust be told on whe line of paper the recor is to be printed. The printer recelver the carnage-enteol information in the form of character ade placed in the first character position of the line. Theretore, the plust charticter of elecord is never printed but is assuned to be whe exagemode control. A blank in the fingt
 for donble spaciny is zero, A diegonsi ($/$ la used whin a format declaram thon to denote and of acond meand to advence the paper one line. Multiple diagomals may be used to advance the paper any nomber of desired limes

Alphanuerte words end phesses in the fom or coments, thtes, and headings may be acomplished by using a Hollerith of H-Neld. The H-fiela. is made a pert of the tomat code for the grven output record. An H-field conslpts of space count, denoting the number of spaces needed for the message; the letter H, when ldentifles the fleld and chen the deared statement. The space count must include all blanks well as characters,
 it. tollowing woula be used with (a) donoting a blank space. READ 6

The follouing is a progran to determine if ctargleg whth the Jengths of sidas ateted are kight twingles. The nrogram allow Low anror of .I In the length of the sides.

PRTIT 4
4 FORMAT (17EMRIGHTuTRI ANGLESQ///)
1 REMD G; H; B, 6
PRINT 7, A, B;


```
15 PRINT \&
    时男
20 PRINT 9
    (H TO 1
6 FGRMAT (3F10.5)
7 FORMAT (1X, 3F10.5)
8 FORMAT (29HaTHISaISnNOTaARIGHTaTRIANGLE//
9 Fermar (25HaTHISvISaAaRIGHTaTRIANGLE//)
END
DATA
\begin{tabular}{|c|c|}
\hline \$ & 4. \\
\hline 4 & 3. \\
\hline S. & 3. \\
\hline 5.1 & 3.1 \\
\hline 5.1 & 3.03 \\
\hline 8.9 & 425 \\
\hline
\end{tabular}
```

This progran instructs the emputer to five paint the hoadig right Trianglegt

 1a leas than α_{i} print "This is a wight triangle move the sheet up two linea and raturn to statemont one, If the result is greatee than or equal to op
 the result of theperation are less that zexo procegd as before, If the result cannot be found ba be less than zero after trying all the posaibzitios? paint "This is not a right taiangla, move the paper up two lines, and procaed to statement one. When all walues hatre been tosted it is the and of the progrem.

The outpiut of the preceding program would appear as:

- Righi Thianeles

$$
\text { 2.00000 4.00000 } 5,00000
$$

THIS IS R RICHT TRIANGLE

* 4.00000. 3.00000.: 5,00000

THIS IS A RIGHT RLANOLE
$5.00000 \quad 3.00000 \quad 4.00000$
THIS IS A RIGHT TRIAMELE
$5.10000 \quad 3.10000 \cdot 3.90000$
THIS IS NET A RIGHT RRIANGIE
5.10000 • $3.03000 \quad 4.10000$

HHIS IS A RIGHT TRIANGLE
$8.90000 \quad 4.25000 \quad 1.40000$
THIS IS NON 美 RIGHT TRIANGIE

BIBLIIOGRAPHY

Lausie, Edward z, Computers and How They Mori. Burlingame, dalifornias South-Western Publishing Company, 1963.
Orgavick, 等liatt I. A Fortran Primer. Feading, Massachusette: AddisonWesley Publishing Company, Inc., 1963.
Saxon, James L, Herman S. Finglander, and William R. Eaglander. Sxytem 360 Programming. Hoglawood Clifes, New: Jerpey 'PrinticemHell Inc., 1968.

[^0]: $0000-00000000000000000=00$

 665666666666666666666666666666666666666668
 888888888 88888888888888888888888888888888 C88888888C88888888888888888888888888888

