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THE MAJOR CONTRIBUTION OF LEIBNIZ 

TO INFINITESIMAL CALCULUS 

I, 

A study of the work of Leibniz is of importance for 

at least two reasons. In the first place, Leibniz was not 

alone among great men in presenting in his early works 

almost all the important mathematical ideas contained in 

his mature work, In the second place, the main ideas of 

his philosophy are to be a.,ttributed to his mathematical 

work, not vice versa. He was perhaps, theearliest to realize 

fully and correctly the important influence of a calculus on 

discovery. The almost mechanical operations which one goes 

through when one is using a calculus enables one to discover 

facts of mathematics or logic without any of that expenditure 

of the energy of thought which is so necessary when one is' 

dealing with a department of knowledge that has not yet been 

reduced to the domain of operation of a calculus, These 

operations were developed and perfected by Gottfried Wilhelm 

Leibniz and thus places all mathematicians of today in his 

debt, 

II. 

Leibniz may be said to have lived not one life but 
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several. As a diplomat, historian, philosopher, and mathe­

matician he did enough in each field to fill one ordinary 

working life. Younger than Newton by about four years, he 

was born at Leipzig on July 1, 1646, and living only seventy 

years against Newton's eighty-five, died in Hanover on 

November 14, 1716. His father was a professor of moral 

philosophy and came of a good family which had served the 

government of Saxony for three generations. Thus young 

Leibniz' earliest years were passed in an atmosphere ofi 

scholarship heavily charged with politics. 

At the age of six he lost his father, but not before 

he had acquired from him a passion for history. Although 

self-taught by incessant reading in his father's library, 

he attended a school in Leipzig. At eight he began the 

study of Latin and by twelve had mastered it sufficiently 

to compose creditable Latin verse. From Latin he passed on 

to Greek which he also learned largely by his own efforts. 

At the age of fifteen Leibniz entered the University 

of Leipzig as a student in law. The law, however, did not 

occupy all his time. In his first two years he read widely 

in philosophy and for the first time became aware of the new 

world which the modern or natural philosophers, Kepler, 

Galilee, and Descartes had discovered. Seeing that this newer 

philosophy could be understood only by one acquainted with 

mathematics, Leibniz passed the summer of 1663 at the Uni­

versity of Jena, where he attended the mathematical lectures 

of Erhard Weigel, a man of considerable local reputation but 
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scarcely a mathematician. 

On returning to Leipzig he concentrated on law. By 

1666, at the age of twenty, he was thoroughly prepared for 

his doctor's degree in law. This is the year in which New­

ton began the rustication at Woolsthorpe that gave him the 

calculus and his law of universal gravitation. The Leipzig 

faculty, bilious with jealousy, refused Leigniz his degree, 

officially on account of his youth, actually because he. 

knew more about law than the whole dull lot of them, 

Before this he had taken his bachelor's degree in 

1663 at the age of seventeen with a brilliant essay, fore­

shadowing one of the cardinal doctrines of his mature 

philosophy. Disgusted at the pettiness of the Leipzig 

faculty Lei~niz left his native town for good and proceeded 

to Nuremberg where, on November 5, 1966; at the affiliated 

University to Altdorf, he was not only granted his doctor's 

degree at once for his essay on a new method of teaching 

law, but was begged to accept the University professorship 

of law. Leibniz declined saying he had very different 

ambitions. 1 

Around 1671 Leibniz invented a more versatile comput­

ing machine capable of counting, addition, substraction, 

multiplication, and division. This was not his main contri­

bution to modern calculating machinery. The main contribution 

1E. T. Bell, Men of Mathematics (New York: Simon and 
Schuster, Inc., 1937), p. 22. 
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was his recognition of the advantages of the binary scale, 

or notation, over the dinary. 2 He imagined a steam engine, 

studied Sanskirt, and tried to promote the unity of 

Germany.3 

Up until 1672 Leibniz knew but little of what in his 

time was modern mathematics. He was then twenty-six when 

his real mathematical education began at the hands of 

Huygens, whom he met in Paris in the intervals between one 

diplomatic plot and another. Huygens presented Leibniz 

with a copy of his mathematical work on the pendulum. Fas­

cinated by the power of the mathematical method in competent 

hands, Leibniz begged Huygens to give him lessons, which 

Huygens, seeing that Leibniz had a first-class mind, gladly 

did. Leibniz had already drawn up an impressive list of 

discoveries he had made by means of his own methods. Under 

Huygens' expert guidance Leibniz quickly found himself. He 

was a born mathematician. 

The lessons were interrupted from January to March, 

1673, during Leibniz' absence in London as an attache' for 

the Elector. While in London, Leibniz met the English mathe­

maticians and showed them some of his work, only to learn that 

it was already known. His English friends told him of 

Mercator's quadrature of the hyperbola. This introduced 

(New 

(New 

2E. T. Bell, Mathematics: ueen and Servant of Science 
York• McGraw-Hill Book Company, 1951 , p. 2 8. 

3Dirk J. Struik, A Concise History of Mathematics 
York: Dover Publications, 1948), p. 156. 
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Leibniz to the method of infinite series, which he carried 

on, One of his discoveries may be noteds if tris the ratio 

of the circumference of a circle to its diameter, 

1f = I- ~ r /{,- - ~ -+ ~ - )(; + , , . 
the series continuing in the same way indefinitely, Thii.s is 

not a practical way of calculating the numerical value of 

·rr ( 3.11.//5-9~6 , .. ), but the simple connection between 7r and 

all the odd numbers is striking. 

During his stay in London Leibniz attended meetings 

of the Royal Society, where he exhibited his calculating 

machine. For this and his other work he was elected a 

foreign member of the Society before his return to Paris in 

March, 1673. He and Newton subsequently (1700) became the 

first foreign members of the French Academy of Sciences, 

The remaining fortyb years of Leibniz' life were spent 

in the trival service of the Brunswick family, In all he 

served three masters as librarian, historian, and general 

brains of the family, It was a matter of great importance to 

such a family to have an exact history of all its connections 

with other families as highly favored by heaven as itself. 

Leibniz was no mere cataloguer of books in his function ·as 

family librarian, but an expert genealogist and searcher of 

mildewed archives as well, whose function it was to confirm 

the claims of his employers to half the thrones of Europe or, 

failing confirmation, to manufacture evidence by judicious 

suppression. His historical researches took him all through 

Germany and thence to Austria and Italy in 1687-90. 



On being called to Berlin in 1?00 as tutor to the 

young Electress, Leibniz found time to organize the Berlin 

Academy of Sciences. He became its first president, The 

Academy was still one of the three or four leading learned 

bodies in the world till the Nazis "pur,ged" it. Similar 

ventures in Dresden, Vienna, and st. Petersburg came to 

nothing during Leibniz' lifetime, but after his death the 

plans for the St. Petersburg Academy of Sciences which he 
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had drawn up for Peter the Great were carried out. The 

attempt to found a Viennese Academy was frustrated by the 

.Tesui ts when Leibniz visited Austria for the last time, in 

1?14. Their opposition was only to have been expected after 

what Leibniz had done for Arnauld, That they got the better 

of the master diplomat in an affair of petty academic politics 

shows how badly Leibniz had begun to slip at the age of sixty­

eight. He was no longer himself, and indeed his last years 

were but a wasted shadow from his former glory. 

Having served princes all his life he now received the 

usual wages of such service. Ill, fast ageing, and harassed 

by controversy, he was kicked out. 

Leibniz returned to Brunswick in September, 1714, to 

learn that his employer the Elector George Louis had left for 

London to become the first German king of England, Nothing 

would have pleasedLeibniz better than to follow George to 

London, although his enemies at the Royal Society and else­

where in England were now numerous and vicious enough owing 

to the controversy with Newton. However, George, now socially 



7 

a gentleman, had no further use for Liebniz' diplomacy, and 

curtly ordered the brains that had helped to lift him into 

civilized society to stick in the Hanover library and get on 

with their history of the illustrious ·Brunswick family, 

When Leibniz died two years later the diplomatically 

doctored history was still imcomplete. 4 As a diplomat and 

statesman Leibniz was as good as the cream of the best of 

them in any time or any pBce, and far brainer than all of 

them together. 

III. 

The seventeenth century was one of activity and 

advancement in the world of math. Analytic methods had be­

come familiar to.ols to most of the mathematicians of the 

period; geometry was being employed to verify and demonstrate 

analytic conclusions and special attention was focused on 

problems dealing with the infinite. 

The time was indeed ripe, in the second half of the 

seventeenth century, for someone to organize the views, 

methods, and discoveries involved in the infinitesimal 

analysis into a new subject characterized by a distinctive 

method of procedure.5 

Unfortunately, not one but two men did just that. The 

methods of the calculus developed by Sir Isaac Newton in 

4Bell, Men of Mathematics, op. cit., p. 130. 

5carl B. Boyer, The Concepts of the Calculus (Wake­
field, Mass,: 1949), p. 385. 
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England and Gottfried Wilhelm Leibniz on the continent were 

essentially the same, yet the dispute over the rights of 

the two discoveries developed into a co~troversy which has 

not yet been settled. Bot4 these men and their followers 

stooped to tactics which were most unworthy of men of intelli-

gence and honor; as a result, the development of math in 

England was brought to a standstill for a full century. 6 It 

must be remembered that these two inventors are not respon­

sible for the beginning of the conflict, only the continuation 

of the conflict, 

The matter was first started in the year 1699 by Fatio 

de Duillier, a Swiss mathematician who. had been living in 

London since 169lr he was a correspondent of Huygens, and 

from letters that Fatio sent Huygens, it would appear that 

the attack had been quietly in preparation for some time. 

Whether he had Newton's sanction or not cannot be ascer-

tained, yet it seems certain from the correspondence that 

Newton had given Fatio information with regard to his writing. 

Fatio then concludes that Newton is the first discoverer and 

that Leibniz, as second discoverer, has borrowed from Newton. 

These accusations hurt Leibniz all the more, because he had 

deposited copies of his correspondence with Newton in the 

hands of Wallis for publication. As Fatio was a member of 

6norothy v. Schrader, "The Newton-Leibniz Controversy 
Concerning the Discovery of the Calculus," Math Teacher, 
55 (May, 1962}, p, 385. 
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the Royal Society, Leibniz took it for granted that Fatio's 

attack was with the approval of that body; he asked there­

fore that the papers infue hands of Wallis should be published 

in justice to himself, He received a reply from Sloane, one 

of the secretaries of the Society, informing him that the 

assumption with regard to any such participation of the 

Society in the attack was groundless; and in consequence of 

this he took no further notice of the matter, and the whole 

thing lapsed into oblivion, 

In the year 1708 the attack against Leibniz was re­

newed by Keill; and the charge that Leibniz had borrowed 

from Newton was most directly made, Leibniz had no one in 

England who was in a position to substantiate his claims, 

for Wallis had died in 1703; so he appealed directly to the 

Royal Society. This body in consequence appointed a comm­

ission composed of members of the Society to consider the , 

papers concerned in the matter. 7 As the British sporting 

instinct presently began to assert itself, Newton acquiesced 

in the disgraceful attack and himself suggested or consented 

to shady schemes of downright dishonesty designed at any 

cost to win the international championship--even that of 

national honor. Leibniz and his backers did likewise. The 

upshot of it all was that the obstinate British practically 

rotted mathematically for all of a century after Newton's 

7J. M. Child, The Early Mathematical Manuscripts of 
Leibniz (Chicag?• Open Court Publishing Company, 1920), p. 6. 
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death, while the more progressive Swiss and Franch, folkw­

ing the lead of Leibniz, and developing his incomparably 

better way of merely writing the calculus, perfected the 

subject and made it the simple, easily applied implement of 

research that Newton's immediate successors should have had 

the honor of making it, 8 

Authorities now generally agree that Leibniz invented 

the calculus independently of any knowledge of Newton's 

fluxions; though Newton had the idea of calculus earlier 

than Leibniz,9 

IV. 

It is extremely useful to have knowledge of the true 

origins of memorable discoveries, especially those that 

have been found not by accident but by dint of mediation, 

It is not so much that thereby history may attribute to 

each man his own discoveries and that others should be en-

couraged toearn like commendation, as that the art of 
l 

making discoveries should be extended by considering note­

worthy examples of it. 

Among the most renowned discoveries of all times must 

be considered that of a new kind of mathematical analysis, 

known by the name of the differential calculusr and this 

even if the essentials are at the present time considered to 

8Bell, Men of Mathematics, op. cit,, pp. 113-114. 

9R. H. Moorman, "Mathematics and Philosophy," ~· 
Teacher, 51 (January, 1958), p. 35. 
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be sufficiently demonstrated neverless the origin and the 

method of the discovery are not yet known to the world at 

large. Its author invented it nearly forty years ago, and 

nlne years later published it in a concise form; and from 

that time it has not been only published in hismsmoirs, 

but also has been a method of general employment; while 

many splendid discoveries have been made by its assistance, 

such have been included in the Acta Eruditorium, Leipsic, 

and also such have been published in the memoirs of the 

Royal Academy of Sciences- so that it would seem that a new 

aspect has been given to mathematical knowledge arising out 

of its discovery. 

Now there never existed any uncertainty as to the 

name of the true inventor, until recently, in 1712, certain 

upstarts, either in ignorance of the literature of the times 

gone by, of through envy, or with some hope of gaining 

notoriety by the discussion, or lastly from obsequious 

fl.attery, have set up a rival to himr and by their praise 

of the rival to him, the author has suffered no small dis­

paragement in the matter, for the former has been credited 

with having known far more than is to be found in the sub­

ject under discussion, Moreover, they have changed ~he 

whole point of the issue, for in their screed, in which under 

the title of Commercium Epistolicum D. Johannis Collinsii 

(1712) they have set forth their opinion in such a manner as 

to give a dubious credit to Leibniz, they have said very 



12 

little about the calculusa instead, every other page is made 

up of what they call infinite series. Such things were first 

given as discoveries by Nicolaus Mercator of Holstein, who 

obtained them by the process of division, and Newton gave 

the more gneral form by extraction of roots. This certainly 

is a useful discovery, for by its arithmetical approximation 

are reduced to an analytical reckoningr but it has nothing 

to do with the differential calculus. Moreover, even this 

they.1make use of fallacious reasoningr for whenever this 

rival works out a quadrature by the addition of the parts 

by which a figure is gradually increased, at once they hail 

it as the use of the differential calculus. (The differen­

tial calculus was not the employment of an infinitesimal 

and a summation of such quantitiesa it .was the use of the 

idea of these infinitesimals being differences and the 

employment of the notation invented by himself, the rules 

that governed the notation, and the fact that differentia­

tion was the inverse of a summation and perhaps the greatest 

point of all was that the work had not to be refer~ed to a 

diagram.) 

Now it certainly never entered the mind of any one 

els~ before Leibniz to institute the notation peeuliar to 

the new calculus by which the imagination is freed from a 

perpetual reference to diagrams, as was made by Vieta and 

Descartes in their ordinary on Apollonian geometry, and to' 

lines which were called ,.mechanical" by Descartes, were 
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excluded by the latter in his calculus. But now by the 

calculus of Leibniz the whole of geometry is subjected to 

analytical computations, and those transcendent lines that 

Descartes called mechanical are also reduced to equations 

chosen to suit them, by considering the differences, as 

dx, ddx, etc., and the sums that are the inverses of these 

differences, as functions of the x's1 and this, by merely 

introducing the calculus, whereas before this no other 

functions were admissable but x, xx, x3, r.x-, etc., that is 

to say, powers and roots. 

Nevertheless, he did not lack for friends to look 

after his fair name, and indeed a certain mathematician, 

one of the first rank of our time well skilled in this 

branch of learning and perfectly unbiased, whose good-will 

the opposite party had tried in vain to obtain, plainly 

stated, giving reasons of his own finding, and let it be 

known, not altogether with strict justice, that he con­

sidered that not only had that rival not invented the 

calculus, but that in addition he did not understand it to 

any great extent. Another friend of the inventor pub­

lished these and other things as well in a short phamplet, 

in order to check their base contentions. However, it was 

of greater service to make known the manner and reasoning 

by which the discoverer arrived at this new kind of cal­

culus, for this indeed has been unknown up till now, even 

to those perchance, who wollflid like to share in this 

discovery, Indeed he himself had decided to explain it, 
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and to give an account of the course of his researches in 

analysis partly from memory and partly from extant writings 

and remains of old manuscripts, and in this manner to illus­

trate in due form in a little book the history of this 

higher learning and the method of its discovery. But since 

at the time this was found to be impossible owing to the 

necessities of other business, he allowed this short state­

ment of part of what there was to tell upon the matter to 

be published in the meantime by a friend who knew all about 

it, so that in some measure public curiously should be 

satisfied. 

The author of this new analysis, in the first flower 

of his youth, added to the study of history and juris­

prudence other more profound reflections for which he had a 

natural inclination. Among the latter he took a keen de­

light in the properties and combinations of number; indeed 

reprinted without his sanction. Also while still a young 

boy, when studying logic he perceived that the ultimate 

analysis of truths that depended on reasoning reduced to two 

things, definitions and identical truths, and that these 

alone of the essentials were primitive and undemonstrable. 

When it was stated in contradictions that identical truths 

were useless and nugatory, he gave illustrative proofs to 

the contrary, Among these he gave a demonstration that 

that mighty axiom, "The whole is greater than its part," 

could be proved by a syllogism of which the major term was 

a defination and the minor term an identitY-. For if one of 
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two things is equal to a part of another the former is called 

the less, and the later the greater• and this is to be taken 

as the defination, Now if to this defination there be added 

the following identical and undemonstrable axiom, "Every 

thing possessed of magnitude is equal to itself," i.e,, A=a, 

then we have the syllogism: 

Whatever is equal to a part of another, is less than 
the other• (by the defination) 

But the part is equal to a part of the whole1 
(i.e., to itself, by identity) 

Hence the part is less than the whole. 

As an immediate consequence of this he observed that 

from the identity a=a, or at any rate its equivalent, A-A=O, 

as may be seen at a glance by straightforward and reduction, 

the following very pretty properly of differences arises, 

namely: 

A -A+B -B+C •C+m -D+E -E = 0 

+L+M+N+P 

If now A, B, C, D, E are supposed to be quantities 

that continually increase in magnitude, and the differences 

between successive terms are denoted by L, M, N, P, it will 

then follow that successive terms are: 

A+L+M+N+P-E = O, 

i.e. L+M+N+P = E-AJ 

that is, the sums of the differences be~tween successive 

terms, no matter how great their number, will be equal to 

the difference between the terms at the beginning and the 

end of the series. For example, in place of A, B, C, D, E, 
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let us take the squares, 0, 1, 4, 9, 16, 25, and instead of 

the differences given above, the odd number, 1, 3, 5, 7, 9, 

will to disclosed, thus 

0 1 4 9 15 25 

1 3 5 7 9 

From which is evident that 

1+3+5+7+9 = 25 - 0 = 25 

and 3+5+7+9 = 25 - 1 = 24J 

and the same will hold good whatever the number of terms or 

the differences may be, or whatever numbers are taken as the 

first and last terms. Delighted by this easy, elegant 

theorem, our young friend considered a large number of 

· numerical seriet;, and also proceeded to the second differences 

or differences of the differences, the third differences or 

the differences between the differences of the differences, 

and so on. He also observed that for the natural numbers, 

i.e., the numbers in order proceeding from 0, the second 

differences vanished, as also did the third differences for 

the squares, the fourth differences for the cubes, and the 

fifth for the biquadrates, the sixth for the surdesolids, 

and so on; also that the differences for the natural numbers 

were constant and equal to lr the second differences for the 

square, 1,2, or 2; the third forthe cubes, 1.2.3, or 6; the 

fourth for the biquadrates, 1.2.3.4, or 24; the fifth for the 

surdesolids, 1,2.3.4.5, or 120, and so on. These things it 

is admitted had been previously noted by others, but they 

were new to him, and by their easiness and elegance were in 
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in themselves an inducement to further advances. But 

especially he considered what he called "combinatory numbers," 

such as are usually tabulated as in the margin. 

1 

1 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

6 

7 

1 

3 

6 

10 

15 

21 

28 

1 

4 

10 

20 

35 

56 

84 

1 

5 

15 

35 

70 

126 

210 

1 

6 

21 

56 

126 

252 

462 

Here, a preceeding series, either horizontal or vertical, 

always contains the first differences of the series immediately 

following it, the second differences of the one next after 

that, the third differenc,es of the third, and so on. Also 

each series, either horizontal or vertical contains the sums 

of the series immediately preceding it, the sums of the sums 

or the second sums of the series next before that, the third 

sums of the third, and so on. But, to give something not yet 

common knowledge, he also brought~ light certain general 

theorems on differences and sums, such as the following. In 

the series, a, b, c, d, e, etc,, where the terms continually 

decrease without limit we have 

Terms 
1st diff. 
2nd diff, 
3rd diff. 
4th diff. 

etc, 

a b c d e etc, 
f g h i k etc, 
1 m n o p etc. 

q r s t u etc, 
8 r 5 6 e etc. 
r P- v .P v etc. 

Taking a as the first term, and w as the last, he found 
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a-w = lf + lg + lh + li + lk + etc. 
a-w = 11 + 2m + 3r + 4o + )p + etc. 
a-w - lq + 4r + 6s + lOt + l)u + etc. 
a-w = lp + (+ lOJ + 20€ + 35d + etc. 
etc. 

Again we have 

+ lf 
+ lf - 11 
+ lf - 21 + lq 

a - w + lf - 31 + 3q - 1 
+ lf - 41 + 6q - 4 + 1 

etc, etc, etc. 

This theorem is one of the fundamental theorems in 

the theory of the summation of series by finite differences, 

namely, 

A tnfin = tlnrm - ~L, • U. n+1h+/ +- n-.C.~ • ~TJn -d- - e:il!. .. 

which is usually called the direct fundamental theorem; for 

although Leibniz could not have expressed his results in 

this form since he did not know the sums of the figurate 

numbers as generalized formulas, and apparently his only a 

special case, yet it must be remembered that any term of the 

first series can be chosen as the first term, Hence adopt­

ing a notation invented by him at a later date, and&noting 

any term of the series generally by y, we .may call the first 

difference dy, the second ddy, the third d3y, the fourth 

d4y; and calling any term of another of the series x, we may 

denote the sum of its terms by~x, the sum of their sums on 

their second sums by f { x, the third sum by f3x, and the 

fourth sum by [ 4 x, hence supposing that 

1 + 1 + 1 + 1 + 1 + etc, = x, 

or that x represents the natural numbers, for which dx = 1, 
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then 

1 + 3 + 6 + 10 + etc. = f x, 
1 + 4 + 10 + 20 + etc. = ff x, 
1 + 5 + 15 + 35 + etc. = f3x, 

and so on. Finally it follows that 

y- w = dy,x- ddy.~ x + d3y.J}rx- d4y.~3x +etc. 

and this is equal to y, if we suppose that the series is 

continued to infinity, or that w becomes zero. Hence also 

follows the sum of the series itself, and we have 

J y = yx - dy. /x + ddy. J/x - d3y. J 3x + etc. 

On his return from England to France in the year 1673, 

having meanwhile satisfactorily performed his work for the 

Most Nobel Elector of Mainz, he still by his favor remained 

in the service of Mainz; but his time being left more free, 

at the instigation of Huygens he began to work at Cartesian 

analysis, and in order to obtain an insight into the geo­

metry of quadratures he consulted the Synopsis Geometriae of 

Honoratus Fabri, Gregory St. Vincent, and a little book by 

Dettonville. Later on from one example given by Dettonville, 

a light burst upon him, which strange to say Pascal himself 

had not perceived in it. For when he proves the theorem of 

Archimedes for measuring the surface of a sphere or parts of 

it, he used a method in which the whole surface of the solid 

formed by a notation round any axis can be reduced to an 

equival(9nt plane figure. From it he made the following 

general theorem. 

Portions of a straight line normal to a curve, 
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intercepted between the curve and an axis, when taken in 

order and applied at right angles to the axis give rise to 

a figure equivalent to the moment of the curve about the 

axis. 

When he showed this to Huygens the latter praised 

him highly and confessed to him that by the help of this 

very theorem he had found the surface of parabolic canoids 

and others of the same sort, stated without proof many years 

before in his work on the pendulum clock. Leibniz stimulated 

by this and pondering on the fertility of this point of veiw, 

since previously he had considered infinitely small things 

such as intervals between the ordinates in the method of 

Cavalieri and such only, studied the triangle 1YD2Y' which 

he called the Characteristic Triangle, whose sides n1~, n2Y 

are respectively equal to 1x2x, 1z2z, parts of the coordi­

nates or coabscissae AX, AZ, and its third side 1Y2Y a part 

of the tangent TV, produced if necessary. 
r Q 

Even th~ gh this triangle is indefinite (being infi­

nitely small), yet he perceived that it was always possible 

to find definite triangles similar to it. For suppose that 

AXXit' AZZ are two straight lines at right angles, and AX, AZ 
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the coabscissae, YX, YZ the coordinates, TUV the tangent, 

PYQ the perpendicular, XT, ZU the subtangents, XP, ZQ the 

subnormals; and lastly let-EF be drawn parallel to the axis 

AX; let the tangent TY meet EF in V, and from D draw VH 

perpendicular to the axis. Then the triangles 1YD2Y, TXY, 

YZU, TAU, YXP, QZY, QAP, THV, and as many more of the sort 

as you like, are all similar. For example, from the similar 

triangles 1YD2Y, 2Y2XP, we have P2Y. 1YD = 2Y2X. 2Y1Yr that 

is, the rectangle contained by the perpendicular P2Y and 

1
YD (or the .element of the axis 1x2x) is equal to the rec­

tangle contained by the ordinate 2Y2X and the element of the 

curve about the axis. Hence the whole moment of the curve 

is obtained by forming the sum of these perpendiculars to 

the axis. ~ 

£ 

H~------------------~ 
~~ 

Also, on account of the similar triangles 1YD2Y, THV, 

we have 1Y2Ya 2YD = TV:VH, or VH~ 1Y2Y = TV. 2YDJ that is, the 

rectangle contained by the constant length VH and the element 

of the coabscissae, 1z2z. Hence the plane figure produced by 

applying the lines TV in order at right angles to AX is equal 

to the rectangle contained by the curve when straightened out 

and the constant length HV. 
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Again, from the similar triangles 1YD2Y, 2Y2XP, we 

have 1YD:D2Y = 2Y2Xs 2XP, and thus 2xP. 1YD = 2Y2x.D2Y, or the 

sum of the subnormals 2xP, taken in order and applied to the 

axis, either to 1YD or to 1x2x, will be equal to the sum of 

the products of the ordinates 2Y2X and their elements, 2YD, 

taken in order. But straight lines that continually in­

crease from zero, when each is multiplied by its elements of 

increase, form altogether a triangle. Let then AZ Always be 

equal to ZL, then we get the right-angled triangle AZL, which 

is half the square of AZJ and thus the figure that is produced 

by taking the subnormals in order and applying them perpen­

dicular to the axis will always equal to half the square on 

the ordinate. Thus to find the area of a given figure 

another figure is sought such that its subnormals are respec­

tively equal to the ordinates of the given figure, and then 

this second figure is the quadratrix of the given oneJ and 

thus from this extremely elegant consideration we obtain the 

reduction of the areas of surfaces described by notation to 

plane quadratures, as well as the rectification of curves; at 

the same time we can reduce these quadratures of figures to 

an inverse problem of tangents. From this Leibniz wrote down 
l 

a large collection of theorems of two kinds. For in some of 

them only definite magnitudes were dealt with and others 

truly depended on infinitely small magnitudes and advanced te 

a much greater extent. 

Tieibniz worked these things out at Paris in the year 

1673 and part of 1674. But in the same year 1674 Leibniz 
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came upon the well-known arithmetical tetragonism~ and it 

will be worth while to explain how this was accomplished, 

He once happened to have occasion to break up an area into 

triangles formed by a number of straight lines meeting in 

a point, and he perceived that something new could be 

readily obtained 

,y. __ _ 

X- -- --

In this figure, let any number of straight lines, 

AY, be drawn to the curve AYR, and let any axis AC be drawn, 

and AE a normal or coaxis to it; and let the tangent at Y to 

the curve cut them in T and U, From A draw AN perpendicular 

to the tangent; then it is plain that the elementary tri­

angle A1Y2Y ·is equal to half the rectangle contained by the 

element of the curve 1Y2Y and AN, Now draw the characteristic 

triangle mentioned above, 1YD2Y, of which the hypotenuse is a 

portion of the tangent or the element of the arc, and the 

sides are parallel to the axis and the coaxis, It is then 

plain from similar triangles ANU, 1YD2Y, that 1Y2Y: 1YD = AU:A, 

or AU. 1x2x is equal to AN, 1Y2Y, and this is equal to double 

the triangle A1Y2Y. · Thus if every AU is supposed to be trans-
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ferred to XY, and taken in it as AZ, then the trilinear 

space AXZA so formed will be equal to twice the segment AY·'····L ... , 

(the symbol \.../ is here to be reaa as "and then along the are 

to"), included between the straight line AY and the arc AY. 

In this way are obtained what he called the figures of seg­

ments or the proportionals of a segment. A. similar method 

holds good for the case in which the point is not taken on 

the curve, and in this manner he obtained the proportional 

trilinear figures for sectors cut off by lines meeting in a 

pointt· and even when the straight lines had their extremi­

ties not in a line but in a curve, none the less on that 

account were useful theorems made out. It is sufficient for 

our purpose to consider the figures of segments and that too 

only for the circle. In~is case, if the point A is taken 

at the beginning of the quadrant AYQ, the curve AZQZ will 

cut the circle at Q, the other end of the quadrant, and 

thence descending will be asympotic to the base BP (drawn 

at right angles to the diameter at its other end B)J and' 

although extending to infinity, the whole figure included 

between the diameter AB, the base BP ••• , and the curve 

AZQZ ••• asympotic to it, will be equal to the circle on AB 

as diameter. 

Take the radius as unity, put AX or UZ = x, and AU 

or AZ = z, then we have x = 2zza, 1 + zz and the sum of all 

the x•s applied to AU, which at the present time we call 

~ x dz, is the trilinear figure AUZA, which is the comple­

ment of the trilinear figure AXZA, and this has been shown 



to be doublt the circular segment. 

The author obtained the same results by the method 

of transmutations, of which he sent an account to England, 

It is reguired to form the sum of all the ordinates 

(1- xx) = y; suppose y = ± 1 + xz, from which x = 2zc, 

1 + zz, andy=+ zz + 1,:, zz + 1; and thus again all 

that remains to be done is the summation of rationals, 

From the above it was at once apparent that, using 

the method by which Mercator had given the arithmetical 

tetragonism of the hyperbola by means of an infinite series, 

that of the circle might also be given, though not so 

symmetrically, by dividing by 1 + zz, as in the same way 

that the former had divided by 1 + z. The autho., however, 

soon found a general theorem for the area of any central 

conic, Namely, the sector include by the arc of a conic 

section, starting from the vertex, and two straight lines 

joining its ends to the cent~r, is equal to the rectangle 

contained by the semi-transverse axis and a straignt line 

of length 

t ± 1/Jp + 1/sp ± 1/?p + ••• , 

where t is the portion of the tangent at the vertex inter­

cepted between the vertex and the tangent at the other 

extremity of the arc, and unity is the square on the semi­

conjugate axis or the rectangle contained by the halves of 

the latus-rectum and the transverse axis, and + is to ~e 

taken to mean + for the hyperbola and - for the circle or 

the ellipse, Hence, if the square of the diameter is taken 



to be unity, then the area of the circle is 

1-1+1-l+tl-AJ+ ••• 
1 3 5 7 ~ 11 
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In the year 1672, while conversing with Huygens on 

the properties of number, the latter propounded to him this 

problem: To find the sum of a decreasing series of frac­

tions of which the numerators are all unity and the denom­

inators are the triangular number; of which he said that 

he found the sum among the contributions of Hudde on the 

estimation of probability. Leibniz found the sum to be 2, 

which agreed with that given by Huygens. While doing this 

he found the sums of a number of arithmetical series of the 

same kind in which the numbers are any combinatory numbers 

whatever, and communicated the results to Oldenburg in Feb­

ruary 1673, as his opponents have stated. When later he 

saw the Arithmetical Triangl~ of Pascal, he formed on the 

same plan his own Harmonic Trtangle. 

ARITHMETICAL TRIANGLE 

in which the fundamental series is an arithmetical progression 

1, 2, 3, 4, 5, 6, 7, • • • 

1 

1 1 
1 2 .. 1 

1 3 3 1 
1 4 6 4 1 

1 5 10 10 5 1 
1 6 15 20 15 6 1 

1 7 21 35 35 21 7 1 
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HARMONIC TRIANGLE 

in which the fundamental series is a harmonic progression; 

1/1 

1/2 1/2 

1/3 1/6 1/3 
1/4 1/12 1/12 1/4 

1/5 1/20 1/30 1/20 1/5 
1/6 1/30 1/60 1/60 1/30 1/6 

1/7 1/42 1/105 1/140 1/105 1/42 

where if the denominator of any series descending obliquely 

to infinity or of any parallel finite series, are ~ach divided 

by the term that corresponds in the first series, the com­

binatory numbers are produced, namely those that are contained 

in the arithmetrical triangle, Moreover this property is 

common to either triangle, namely, that the oblique series 

are the sum and difference series of one another, In the 

Arithmetrkal Triangle any given series is the sum series of 

the series that immediately precedes it, and the difference 

series of the one that follows it; in the Harmonic Triangle, 

on the other hand, each series is the sum series of the series 

that follows it and the difference series of the now preceding 

it, From which it follows that 

1 + 1 + 1 + 1 + 1 + 1 + 1 + • • • = 1 r 2 3 zr 5 b 7 0 

1 + 1 + 1 + 1 + 1 + 1 + 1 + • • • = 2 
1 3 b 10 I5 21 213 T 
1 + l.l + 1 + 1 + -,1 + 1 + 1 + I I t =1 r r;:- ro 20 35 56 84 2 

1 + 1 + 1 + 1 + 1 +· 1 + 1 + • • • = 4 r 5 15 E 70 126 210 3 

1/7 
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a denominator or an exponent, he perceived that he could 

always find the sum series of the given series, For in­

stance, to find the sum of the squares, since it is plain 

that the variable cannot be raised to a higher degree than 

the cube, he supposed its general term z to be 
2:: I X j + MX.X -+I'\ X J W heR.e. d-z. h,s +o be ~X -l• 

we hAve. dz.:: ld(xtl)-+mcl{xx) '"tr\; (whe!2e dx =J); how 

cJ {x ~ -= 1x.x ;- ~x + 1 ) o.r. J d (x x) - $J.x +I, tJ s o) ReAJ.I fov.,t.JI; 

he..vee. J z.:::. 3/ X x +3/X +I -+~ f'(\X + fl'. + ll .:::;:::: XX J 
I I JJ /) lj J/ () - ~ • 

, • ::. 1~ m = - /~ ~ - e. + n :: o 1 oR. - J 
J ) 

!J.NJ -I-he. j 'M't' AAf feun o I' -Me S1<1h - ~-e R.l'.!~ fO,e He 
.5,Wit~~ is. ~x J- ~x.x + %,x f)J<. :Jx .1_ 3xx + x J : ~ " 

As an example, if it is desired to find the sum of 

the first nine or ten squares, i.e., from 1 to 81 or from 1 

to 100, take for x the value 10 or 11, the number next 

greater than the root of the last square, and 2x3-3xx+x,r6 

will be 2GGG-300+10,:6 • 285, or 2,1331-3.121+11,:6 • 385. 

Nor is it much more difficult with this formula to sum the 

first 100 or 1000 squares, The same method holds good for 

any power of the natural numbers or for expressions which 

are made up of such powers, so that it is possible to sum as 

many terms as we please of such series by a formula, But our 

friend saw that it was not always easy to rpoceed in the same 

way when the variable entered into the denominator, as it 

was not always possible to find the sum of a numerical 

series; however on the following up of this arne analytical 

method, he found ~general, and published the results, that 
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a sum series could always be found, or the matter reduced 

to finding the sum of a number of fractional terms such as 

1/x, 1/xx, l/x3, etc,, which at any rate, if the number of 

terms taken is finite, can be summed, though hardly in a 

short way, but if it is a question of an infinite number of 

terms, then terms such as 1/x cannot be summed at all, 

because the total of an infinite number of terms such as 

1/xx, l/x3, etc., be summed except by taking quadratures, 

So, in the year 1682, in the month of February, he noted 

that if the numbers 1.3, 3,5, 5.?, 7.9, 9.11, etc, or 3, 

15, 35, 63, 99, etc., are taken and from them is formed the 

series of fractions 

1 + .1 + 
3 15 

1 + 
33 

1 + 1 + ••• 
~ 99 

then the sum of this series continued to infinity is nothing 

else but 1/2; while, if every other fraction is left out, 

l/3+1/35+1/99+etc, ex:;>resses the magnitude of a semicircle 

of which the square on the diameter is represented by 1. 

Thus, suppose x = 1, 2, 3, etc. Then the general term of 

1/3+1/15+1/35+1/63+ ••• is 1 J it is required to find 
4xx+8x+3 

the general term of the sum series, 

Let us try whether it can have the form e. /(6 X ..-c..), 
the reasoning 

e --
being simpleJ then we shall have 

eb I 

hence, equating coefficients in the two formulas, we have 

b-=- ~) eb:::.JJ OL c;:}/.:1..-

bb ...,.. .:l.be.; g 0~ 4-t- 'I c.. -;::.. S') ()~ c = 1/ 



31 

and finally we should have also he.. -te-e. ::= .3 which is the 

case, Hence the general term of the sum series if ( /Sj)/ 

(:J.X+J ) or 1/{'lx-t-e:J.) , and these numbers of the form 

lfX +~ are the doubles of the odd numbers. Finally he 

gave a method for applying the differential calculus to 

numerical series when the variable entered into the ex-

ponent as in a geometrical progression where, taking any 

radix b the term is bx where x stands for a natural number. 

The terms of the differential series will be 

and from this it is plain that the differential series of 

the given geometrical series is also a geometrical series 

proportional to the given series, Thus the sum of a geo­

metrical series may be obtained, 10 

v. 

A (real) alternating series ot which the absolute 

values of the terms form a m~otonic null sequence, is 

invariably convergent, If Z.. (·1) 
11 
bv , with b V ~ 0 

V;:-O 

is such a series, then its value lies between b 0 'AJJd h0 -h1, 

more generally, between any two successive partial sums. 

Proofs For arbitrary matural V and p , ,IJ-I 

/(-() v-tlbv-tl i-,, • +{-~ v-t'/) hvtp / == J bv+\ -bv-r~ + .. • +(-t) bV-tf') 
The sum between the absolute value sign aan be written in 

10This whole section is reprinted from J, M. Child, 
The Early Mathematical Manuscripts of Leibniz already foot­
noted, since it is essential to present Leibniz; own thoughts, 
I have included this section, Please remember that these 
words are his own, not mine. The passages pome from pages 
22-27, 28-34, 91-45, 49-52. 
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the form f}; V t;o ;J -1 _..a /s eve .II 

bvt-1 - {bvt-J. -bv-r3 )-.,,- ( bvtp-1 -bvt-/', ~I' Js o ~d 
Si~ce /AvJ is decreasing, this shows that this sum ? C> 

and therefore the absolute value sign on the right may be 

removed. I~ this sum is then written in the form 

b ·- {h _ h ) ..... _ [ hv-r.P-t - bv-r.,a J .A.f.P /s. e ve.A' 
IJ.f( V+~ V-t8 Jl I b ;) I l I 

Vt-;PJ""1 .P JS,oqlc{ 

then this shows further that the sum is g hv+-l • Since 

hv \; 0 , this is ' E for a~l V ~P.. , if p. is 

chosen so that b,P- L £ .1; t 

Let any curve AEC be referred to (). R.i. L BAb J let 

flBnoc. nx and let the last X./7br also let8t:nRDny 

and the last 'f/1 e.. • 

Ot'r\ n ' \j X =(i; X 

Then it is plain that 
b 2l.. xz 

:: ~ -0/'(11). ;;: ~ Y I I I 
(tj 

For the moment of the space ABCEA about AD is made 

up of rectangle contained by &c.(: y) and R8 (= x) . Also the 

moment apout AD of the space ADCEA, the compliment of the 

former is made up of the sum of the squares on DC halved 

(= ~) • and if this moment is taken away from the whole 

moment of the rectangle ABCD about AD, i.e., from c into 
~ omn. x, or from ~ , there will remain the moment of 

the space ABCEA. Hence the equation that is obtained it 
2. h .?c. 

Oh\1\ ""' ib X + OJ'nl). ~ tc y ,;; -:::r . I I (i) 

11Konrad Knopp, Infinite Sequences and S§ries (New 
Yorke Dover Publications, 1956), p. 68." 



In this way be obtain the quadrature of the two 

joined in one in every aaseJ and this is the fundamental 

theorem in the center of gravity method. 
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Let the equation expressing the nature of the curve be 
2. 2 d ay +b:r. +c.xy + x 1-e y +- {':: o (3) 

and suppose that X~;: 2. J +he.AJ 'I :::> Yx, 
Substituting this value in (3), we have 

~2 2 2 ez 
~ +bit +CZ. +JK +-x- -t-f-=- 0 

and on removing the fraction, 
2. I 'I <. 1. !J ./' Z. 

~2. i-t>x t-c.x z. -teX +ex-z +T-x '::! o 
Again, let X 2.::-~w J then substitution in ( 3), we have 

tAy 2 
-rjbw +e)(y +dx t- ey + / = CJ 

and: X:: -~yz -Jbw -ey--f 
(l.y-rd. 

X= fcaw 
and squaring each side, we have ? 

2 

. ~~2 -t-4~"/t_, -t-:J-Aey3+;)~ 2+ t.Jt~ 2+l/iewy +C/tjw +e '/ 
+:)lev + ft-:lt:--y ~- t./cdyw -~d<w ===- o ft) 

If a curve is described according to equation (5), 

and one according to (9), the quadrature of the figure of 

the one will depend on the quadrature of the figure of the 

other, and vice versa. 12 





From these the following general rules may be de­

rived for the differences and sums of the simple powerss 

the =e J f e·-~ c;.T\d ctJnveRsely /xe = ~~;'J 
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~ i?...U t:-e 
1 

j ~ =- d y-2 t»/J I b e. ..... ,:; K -
3 

o R - ~ 3.1 

j ---. d ~ // - ~ 1/ ~ ~ n d IX o 12. X :i w iII be - /.,2 .( o.IE -/.2 / .Y:-r j 

·-:--. 
- -..., dy 

j_ef._ Y:: X~ i-he» dy = ;)x jl( o~ ;;;- = ~X. 

By the same met~od, the general rules is established as: 
dxe c:-1 I ~ .xet-1 
cix = e. x ; ~lid _) x edx :::::. e+- I ~ 

Suppose that the equation 
2 z 12 z /~ 

~ y +by A + c 2 -f X -t j y +It :::: 0 

is utilized and y-rdv :: '/ and x+J.x -:o X , by omitting these 

things that should be omitted, another equation 
z b 2 z. z 1 ~ _ a'i -t- yx -+ex -t ._p x -+ j i -+ " - 0 

r;._"l d~ y +by JX +.):!._,:IX -+0 z clX -t 3z;y 
hx dy 

is formed: 

~ +h axdj +<!-d)( z ~ o 

- o. 

It can be extended indefinitely: Let there be any 

number of letters, and any formulas composed from them; for 

example, let there be the formula made up of three letters, 
t b 2 z_ -1 ) ) k/lx II\"> -A &.-y X c z oi.X .5Y,k. nxz.. v "' ,.,e- p - UJ 

From this comes another equation 
l z. 1. I 

()..'} h" CZ- ij)( !>itht - I,, 
;>.fAd~ " d-b J;:,.. ~e-:h z {y JX 

t X J;; 

\ 

S ;rn 1 - __E.---

//)_f2)'/ J JV TY'\ JX l o.R_ I y 

{)._~L h ~m v6dxdy• 1 
I 

It is plain from this that by the same method tangent planes 

to surfaces may be obtained, and in every case that it does 
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not matter whether or not the letters x, y, z have any known 

relation, for this can be substituted afterward. 13 

VIII. 

Let CC be a line, of which the axis is AB, and let BG 
be ordinates perpendicular to this axis, ·these·belng called 

y, and let AB be the 

being called x. 

cut off along the axis, these 

Then CD, the differences of the abscissae, will be called dXJ 

such are ic1n, 2c2n, 2c2n; 
3
c3n, ~tc. Also the straight 

lines 1n1c, ®n
3
c, 

3
n4c, the diff~rences of· the ordinates, will 

be called dy. If now these dx md dy are taken to be inflni tely 

small, or the two points on the curve are understood to be a 

distance apart that is less that any given length, i.e., if 

1n2c, 2nac, etc. are considered as the momentaneous increments 

of the line BC, increasing continuously as it descends along 

AB, then it is plain that the straight line joining these two 

joints, 2c~ 1c say, when produced to meet the axis in~ 1T, will 

be the tangent to the curve, and, 1T, 1B will be to the ordi­

nate 1B1c as 1c1n is to 1n2cr or, if, 1T1B or 2T2B, etc. are 

in general called t, then t:y::dxtdy. Thus to find the 

d 

l3Child, ,;;;..op...._.:..-..;;;c=l-.t., p. 124-126. 
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diffe.rences of series is to find tangents; 

For example, it is required to find the tangent to the 
.!! 

hyperbola. Here, since y = x , supposing that in the dia-

gram, x stands for AB the abscissa along on asymptote, and 

a for the side of the power, or of the area of the rectangle 

AB,BCJ then 

dy = 
as will be soon seen when this method of calculus is set 

g 
forth, hence czcdy or ta~sa-xxcaacc-xc 

t = -y, Tr"T xaa~xayJ therefore 

that is, in tbe hyperbola BT will be equal to AB, but on 

account of the sign -x, BT must be taken not toward A but 

in the opposite direction, 

Moreover, differences are the opposite to sumsr thus 

4B4C is the sum of all the differences such as 3n4c, 2n
3
c, 

I 

etc, as far as A, even if they are .infinite in number, 

This fact is represented thus, fdy:y. Also representing 

the area of a figure by the sum of all the rectangles con­

~ned by the ordinates and the differences of the abscissae, 

i.e, , by the sum 1 B1n+2~2n+3B3n+etc, For the narrow tri­

angle 1e1n2c, ~C 2DxC' since they are infinitely small com­

pared with the said rectangles, may be omitted without risk, 

and thus represented the area of the figure by JyJ1.., or the 

sum of the rectangle contained by each y and the dx that 

corresponds to it, Here, if the dx's are .taken equal to one 

another, the method of 6avalieri is obtained. 
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Obtain the area of a -zfigure by finding the figure of 

its summatrix or quadratrix, and of this thecordinates are 

to the ordinates of the given figure in the ratio of sums 

to differencesr for instance, let the curve of the figure 

required to be squared be EE, and let the ordinates to it, 

EB, which is called e, be proportional to the differences of 

the ordinates BC, or to dyr that is let 1B1E: 2B2Ec: 1n2cz 

2n2c, and so on1 or again, let A1Bc 1B1c, 1c1n: 1n2c, etc, or 

dx:dy by in the ratio of a constant or never-varying 

line a to 1B1E or e; then ~ 

dx : dy ,' .' tt.• e J t>fl d( ~ &J.. Y J 
.', )edx ~ ~j'/, 

straight 

Since edx is the same as e multiplied by its corresponding 

dx, such as the rectangle 
3
B4E, which is formed from 

3
B

3
E 

and 3B4B J thence ~ dx is the sum of all such rectangles, 

3B4E+2B1E+3B2~+etc., and this sum is the figure AfB--EA, 

if it is supposed that the dx's, or the intervals between 

the ordinates e, or BC, are infinitely small. Again, ady 

is the rectangle contained by a and dy, such as is contained 

by ~n4c and the constant length a, and the sum of 

c: ~----.-A-------... 

;>t \--"~---------l..roilll 

3~.--~--------------~ 

qE~--------------~ 
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these rectangles, namely~ady, or 
3
n4c.a+2n

3
c.a+1D2C,a+etc. 

is the .same as 3n4 C+2n3c+1 n2C+etc. into ~· that is, the same 

as 4B4c.a, therefore~ady = aJfdy = ay. Therefore~edx = 
ay, that is, the area A4B4EA will be equal to the rectangle 

contained by 4B.4c and the constant line a, and generally 

ABEA is equal to the rectangle contained by BC and a (See 

Proof I). 

Thus, for quadratures it is only necessary, being 

given the line EE, to find the summatrix line CC, and this 

can always be found by calculus, whether such a line is 

treated in ordinary geometry or whether it is transcendent 

and cannot be expressed by algebraical calculationc •of this 

matter in another place. 

Now the triangle for the line I called the character­

istic of the line, because of its most powerful aid there 

c~n be found theorems about the line which are seen to be 

adm.irable, and its center of' gravity; for.; 1c 2c is equal to 

(dx.dx+dy.dy, From this comes a ~ethod for finding the 

length of a curve by means of some quadrature1 i.e., in the 

case of the parabola, if y = ~~ then dy = xdx, and hence 
2a a 

1c 2c = ~x~a+xx1 hence, 1c2c:dx as the ordinate of the 

hyperbola, depends on the quadrature of the hyperbola, as 

has already been found by others. 

If t:ya:dx:dy; thence tdy = ydx, and therefore 

~ tdy =j{ydx. This equation, enunciated geometrically, 

gives an elegant theorem due to Gregory, namely that if 
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BAF is a right angle, and AF = BG, and FG is parallel to 

AB and equal to BT, that is, 1F1G = 1B1T, then tdy, or the . 
sum of the rectangles contained by t (4F4G or 4B4T). and 

dy ( 3F4F or 8n4c_) is equal to the rectangles ffF 
3

G+
3
F 2G+ 

eF1G+eto,, or the area of the figure A4F4GA is equal to 

ydx, that is, to the figure A4B4CA; or generally, the 

figure AFGA is equal to the figure ABCA. 14 

IX. 

Differences and sums are the inverses of one another, 

that is to say, the sum of the differences of a series is 

a term of the series, and the difference of the sums of a 

series is a term of the series and thus /dx = x for the 

former and d X =: x for the latter, 

Thus, let the differences of a series, the series 

itself, and the sums of the series, be 

Bifferences 1 2 3 4 5., ,dx 
. Series 0 1 3 6 10 15,., X 

Sums 0 1 4 10 20 25 ••• 

Then the terms of the series are the sums of the differences, 

or x = dxr thus 3 = 1+2, 6 = 1+2+3, etc,, on the other hand, 

the differences of the sums of the series are terms of the 

seriea, or dfx = Xf thus 3 is the difference between 1 and 4, 

6 between 4 and 10, 

Also, da = o, if it is given that a is a constant 

quantity, since a-a= o, 

~o.P~·~c-i~t,, p, 137-141, 

X 
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ADDITION AND SUBTRACTION: 

The difference or sum of a series, of which the 

general term is made up of the general terms of other series 

by addition or subtraction, is made up in exactly the same 

manner from the differences or sums of these series; or 

x+y-v = }'dx+dy-dv,} x+y-v = /x.+ / y-/v 

SIMPLE MULTIPLICATION: 

Here dxy = xdx+ydy, or xy =J(xdx+/ydy 

this is what is said about figures taken together with their 

complements being equal to the circumscribed rectangle. It 

is demonstrated by the. calculus as follows: 

dxy is the same thing as the difference between two 

successive xy's; let one of these be xy, and the other x+dx 

into y+dy; then -----
dxy = X+di.y+dy = xdy+ydx+dxdy; 

the omission of the quantity dxdy, which is infinitely small 

in comparison with the rest, for it is supposed that dx and 

dy are infinitely small, will leave xdy+ydx; the signs vary 

according as y and x increase together, or one increases as 

the other decreases. 

SIMPLE DIVISION: 

di xdy-ydx 
X = ' XX 

F r dy_ .Y±£.Y Y.. = xdy-ydx . which becomes equal to xdy-ydx 0 
' x = x+dx - x xx+xdx ' xx 

(if xx is equal to xx+xdx, since xdx can be omitted as being 

infinitely small in comparison with xx); also, if y ~ aa, 

then dy = o, and the result becomes -a~~x, which is the value 
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used before. 

From this any one can deduce by calculus the rules 

for Compound Multiplication and Division; thus, 

dxvy = xydv+xvdy+yvdx, 
d~ _ vzdy-yvdz-yzdv I 

vz- vv.zz ; 

as can be proved from what has gone before; then 

d.Y = xdy-ydx. , 
X . . XX ' 

hence, by putting zv for x, and zdv+vdz for dx or dzv in 

the above, the proof is complete, Powers follow: dx2 = 
2xdx, dx3 = Jx2dx, and so on, For, putting y = x, and 

v = x, then write dx2 for dxy, and this is equal to 

xdy+ydx, or equal to 2xdx. Similarly, for dxJ write dxyv, 

that is xydv+xvdy+yvdx, or equal to Jx2d~. By the same 

method, dxe e-1 = e,x dx, 
h d!a 

d 
I -Hence also, X" ~ X h+J -

I _L ~ 
then e. -:-A and .X 

e -I 
xh+l For, if 'XI1 ::- X - as is well , - ' 

known. The same will do for fractions. The procedure is 
.~ r,:..-

bhe same for irrationals or roots. Jy X"' -=dx.. , or 
e_- I I 

e_ • X --:Jx (or substituting once more n: Y' for e... , and 
~ ~..ll h-r:r··· 1 d v.-r-h-..- : r-jorte-1) y ')( ld~ thus comes I X h I 

Moreover, conversely, _j__ ~ r ~ 

f e X. e+' -( ....L.. Y' I - I X )1-rr: r 
X ,Jx ==- e+l ) J 'le"Jx ~ ~-J'Y ~) ~'dX; ;-+h X ~ 

These are the elementary principles of the differen-

tial and summatory calculus, by means of which highly com­

plicated formulas can be dealt with, not only for a fraction 

or an irrational quantity, or anything else; but also an 



indifinite quantity, such as x or y, or any other thing 

expressing generally the terms of any series, may enter 

into it. 15 

x. 
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"Jack of all trades, master of none" has its spec-

tacular exceptions like any other folk proverb, and Gott­

fried Wilhelm Leibniz is one of them, Matnematics was but 

one of the many fields in which Leibniz showed conspicuous 

genius. The mechanical operations which mathematician per­

form to discover new facets of logic and fact all date 

back to Leibniz. All the great ideas of importance of a 

calculus in assisting deduction are found in his writings, 

It was Leibniz' main wish that some day some would delve 

deeply into mathematical ideas and join the beauty of their 

minds to the labor of his. This is exactly what every 

mathematician has done, He accomplished his wish and with 

no reserve is truly proclaimed the master of infinitesimal 

calculus, 

15child, op. cit,, p. 142•144. 
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PROOF I 

.-
Let AMB be a curve of which the axis is AD and let 

BD be perpendicular to AD; also let KZL be another line 

such that, when any point M is taken in the curve AB, and 

through it are drawn MT a tangent to the curve AB, and 

MFZ parallel to DB, cutting KZ in Z and AD in F, and R is 

the space ADLK 

and DB. 

;( 

J 

For, if DH = R and the rectangle BDHI is completed, 

and MN is taken to be an indifinitely small arc of the 

curve A.B, and MEX, NOS are drawn parallel to ADJ then NO:MD = 

TF I FM ::: R.: FZ; 

NOtFZ = MO,R and FG.FZ = ES.EX. 

Hence, since the sum of such rectangles as ra.Fz 

differs only in the least degree from the space ADLK, and 

the rectangles ES.EX form the rectangles DHIB, the theorem 

is obvious. 



•• 
~U\'.\ ~U:TIIOIJtS I'IW MAXIliiS ET )lliSUIIS, iTEliQUE TAN-

c;t::'iTIDlli, Ql:At: :St:c: t'llACTAS NEt: IRRATIONALEs 
Qt:A:STIT.\Tt:s MUilATliR, ET SI~GliLARE PRO 

II. !.IS f:.\I.Ct:l.l GE~Di; *). 

Sit lliJ;. Ill) ui~ AX. el cttn·ae plures, ul \'V, \fW, Y\', ZZ, 
•tnannn onliuate ad a~etn nunnalc•, \'X, \\'X, \'X, ZX., quae Yo­
·t:euun· re•l~«liYa ,., w, ~·. 1, t.'l· it•~• AX, abi!CiAa ah ase, Yot:elur 1. 

Tangl!ntfll •inl \'11, Wt:. \'0, z•~. ftli oei:urrentet reapediYI ia 
t•unctis B, C. 11, •:. Jnao recta olic1ua pru arbitrio asaumll Yocelllr 
dx, d rerll, 'llliiC ail ad dx, ut. v (vel w, \'el y, Yel 1) ell 11d XB 
(\'el XI:, Yel Xl.l, , . .,1 XEJ vucetur dv (Yel dw, \'el dJ', vel da) aiYe 
tlilferenlia i1•1111ruw v (\'el i1•111rum w, \'1!1 y, vel z). Ilia. polit .. 
calculi I'I'I!UIII! eruut lalu. 

Sit a •1uantilu ·data Cllllitan', fll'il da aet111llil 0, el da1 eril 
illlf(UIIill ~ .. ,. Si alit . y aequ. " (.etl urdiDJll qiUieyil cunae n 
aequallll cuivi• urdir11tan nHIIIOodrnli curvae \'V) eril dy ~equ. dY. 
Jam Adtlitio " Sw611't"ti• : si 11it z - y + w + x aequ. Y, erit 
clz :·_ )'+ '" + 1 'co dv actiO· dz - dy + d\\· + clx. MHitiplic•tio : 1li\· 
III!IIU• ldY + Ydll. 11.'11 llllllilO y lt!!J.U. IY, lif:l dy aequ. ldY + YdX, 
In arbitrio eliim eat Yel ronuulam .' 111 llY, ,·el compendio Jll'o ea . 
litf!ram. ul y. adbiloere. ~otandum. el x cl dx r.odem modo in 
hoc: calculu trl('.tnri, 11l y et dy, Yel aliam litcram indrtt:rminallnt 
cum tiUR dill'ercntiali. Notandum etiam, non dari seinper rep111•um 
il dilfereuti•li At~quationa. nisi cum quadam cautio~, de quo alibi. 

I, D' . . I v I ( . ,.) d ±•dn:vdY u1·ro '""'o: 1 -Ye posato 1 aec111. - z aequ. ··-·--'·-.. , 
~· ~· . yy . 

. • Quoad Sig•• hoc proloe notandum, cum m calc:ulo pro hlera 
~uhatituitur lliRIJtliciler eju11 dilfl!rentialis, · se"ari quidl!m Ndem 
11it;ua, et pro + z acribi + dx, JltO - z scrihi - dz. ul ex 1ddi-

*) Act. El'llfl. Lii•M, aa. 188C. 

LEIBNIZ18 i'IRST PAPER ON THE CALCULUS (As reprinted by 
' C. I. Gerhardt, 1858) 
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