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studies; Weseloh and Andreadis (1992a, b) also did not

find any consistent pattern of density dependence. This

is surprising given that E. maimaiga typically completes

several disease cycles within a single host generation and

this, coupled with a mass-action process for disease

transmission, holds potential for generating density-

dependent behavior. Because initial infections each year

originate from resting spores that persist and accumu-

late in the soil over many generations, disease levels in

any year may be influenced by host densities over many

years and this may prevent the occurrence of direct

density dependence. It is also possible that the highly

mobile nature of conidia prevents fungal pathogen

populations from tracking local host populations both

within and among host generations. Perhaps as a result,

variation in mortality caused by E. maimaiga is more

strongly influenced by environmental conditions (i.e.,

moisture; Hajek 1999) than by host density.

The unaltered density-dependent behavior of LdNPV

following the invasion of E. maimaiga would suggest

that this virus may continue to play a dominant role as a

driver of oscillations in gypsy moth populations. Indeed,

Allstadt et al. (2013), analyzing historical records of

defoliation, found that the period of oscillations in

gypsy moth populations has not clearly changed

following the appearance of E. maimaiga in 1989. They

noted, however, that the amplitude of oscillations may

have diminished since 1989, although such a change was

not unprecedented in historical records dating back to

1924. Thus, at present, it is not clear if the recent

decrease in outbreak amplitude can definitively be

attributed to the activity of E. maimaiga. We note here

that the mortality caused by E. maimaga is consistently

high, and this could logically result in a diminution of

the amplitude of cycles driven by the interaction of

LdNPV with gypsy moth populations.

The little that is known about population-level

interactions between competing pathogens indicates that

such relationships are complex and difficult to predict

from laboratory studies alone. There are examples from

the animal disease literature illustrating synergy, antag-

onistic, and neutral population-level interactions among

competing pathogens (Rohani et al. 2003, Jolles et al.

2006, 2008). Results from the present study indicate an

apparently neutral impact of E. maimaiga on the density

dependence of LdNPV in North American gypsy moth

populations. Laboratory studies (Malakar et al. 1999b)

indicate that E. maimaiga has relatively little impact on

LdNPV transmission, although this has not been

confirmed in the field. It is also remains to be determined

if E. maimaiga alters host demographics (e.g., age

structure) that might influence longer term LdNPV–

host interactions. Nevertheless, the lack of a more

pronounced impact of E. maimaga on LdNPV dynamics

is a remarkable result given the obvious superior

competitive characteristics of this fungal pathogen.

Moreover, E. maimaiga may have modified the dynam-

ics of host populations despite its neutral impact on the

primary driver of host gypsy moth oscillations. The

impact of E. maimaiga reported here is slightly atypical

compared to other emergent fungal pathogens that have

been found to exhibit strong density dependence and

some of which have driven host populations to

extinction (Fisher et al. 2012).
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Appendix A

A description of the study sites (Ecological Archives E094-110-A1).

Appendix B

Numbers of gypsy moth larvae collected (Ecological Archives E094-110-A2).

Appendix C

Microscopic identification of LdNPV and Entomophaga maimaiga in larval cadavers (Ecological Archives E094-110-A3).

Supplement

SAS code for general linear model analysis (Ecological Archives E094-110-S1).
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