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Abstract
Mycobacteriophages – viruses of mycobacterial hosts – are genetically diverse but morpho-

logically are all classified in the Caudovirales with double-stranded DNA and tails. We de-

scribe here a group of five closely related mycobacteriophages – Corndog, Catdawg,

Dylan, Firecracker, and YungJamal – designated as Cluster O with long flexible tails but

with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg par-

ticles, and Corndog-infected cells confirms expression of half of the predicted gene prod-

ucts and indicates a non-canonical mechanism for translation of the Corndog tape measure

protein. Bioinformatic analysis identifies 8–9 strongly predicted SigA promoters and all five

Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad sym-

metry located throughout the genomes. Comparison of the Cluster O phages provides in-

sights into phage genome evolution including the processes of gene flux by horizontal

genetic exchange.

Introduction
The bacteriophage population is vast, dynamic, and old, spanning considerable genetic diversi-
ty [1–3]. Phages of phylogenetically distant hosts typically share little nucleotide sequence simi-
larity and few genes encoding proteins with amino acid sequence similarity [4]. Phages also
typically encode a high proportion of genes with no sequence similarity to proteins outside of
the phages of that particular host, and the global phage population likely harbors the largest
reservoir of unexplored sequence information [5]. Phages of a single common host may also
show substantial nucleotide sequence variation, although the diversity is expected to be depen-
dent on the diversity of the bacterial population within the environment from which those
phages are isolated [6].

Mycobacteriophages—viruses of mycobacterial hosts—display considerable genetic diversity
and GC% content [7, 8]. Comparative genomics of over 290 fully sequenced mycobacteriophage
genomes shows that they can be divided into groups of closely-related genomes referred to as
clusters, several of which can be further divided into subclusters. [7]. There are currently 20 clus-
ters (A-T) and nine singleton phages (those without any close relatives), and ten of the clusters
are subdivided into subclusters (phagesdb.org). The diversity of these phages varies among these
various groups, with some containing closely related genomes sharing>90% of their genes,
whereas others are highly diverse. The genomes are typically mosaic in their architectures, with
individual genes or groups of genes present in a multitude of different genomic contexts [9].

Mycobacteriophage Corndog was isolated usingM. smegmatismc2155 as a host and was
previously described as a singleton phage with an unusual prolate head [9]. The vast majority
of mycobacteriophages have siphoviral morphologies, most of them with isometric heads. The
exceptions are Corndog and the phages in Cluster I, although their dimensions differ; the
length:width ratio of the capsids is 2.5:1 and 4:1 for Cluster I phages and Corndog respectively
[8]. Corndog is also unusual in that the viral genome contains an atypically short (4-base) 3’
single strand extension, and appears to use non-homologous end joining to recircularize the
genome upon infection, a process likely facilitated by a phage-encoded Ku protein [10]. Corn-
dog does not infectM. tuberculosis orM. smegmatis Jucho, and plates at a greatly reduced effi-
ciency onM. smegmatisMKD8 relative toM. smegmatismc2155 [6]. The genome was noted to
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contain several unusual features including genes coding for methylases and glycosylases within
the structural genes, a DNA Polymerase Beta clamp, and an AAA ATPase [9]. Corndog does
not encode an integrase and stable lysogens have not been reported [8].

Here we describe four mycobacteriophages—Catdawg, Dylan, Firecracker, and
YungJamal—with strong nucleotide sequence similarity to phage Corndog such that all five ge-
nomes constitute Cluster O. These genomes are sufficiently similar that dividing the cluster
into subclusters is not warranted, and all five exhibit the prolate capsid morphology described
for Corndog [9]. Genome comparisons reveal several notable features including putative tran-
scriptional promoters and an unusual 17 bp repeated motif present more than 30 times in each
genome. Proteomic analysis of purified Corndog virions and Corndog infected cells identifies
about half of the predicted gene products including many small non-structural proteins of un-
known function and one previously unannotated gene. Additional proteomic analysis of an
unpurified lysate of Catdawg virions identifies a similar proportion of the predicted
gene products.

Results

Five mycobacteriophages constitute Cluster O
Mycobacteriophage Corndog was isolated in 2001 [9] and until 2012 was designated as a sin-
gleton phage without any close relatives [11]. Since 2012, four phages—Catdawg, Dylan, Fire-
cracker, and YungJamal—have been found that are related to Corndog and constitute Cluster
O (Table 1, Fig. 1). They were isolated in the Science Education Alliance Phage Hunters Ad-
vancing Genomics and Evolutionary Science (SEA-PHAGES) program [12], the Mycobacterial
Genetics Course held at the University of KwaZulu Natal (UKZNMGC) and the Phage Hunt-
ers Integrating Research & Education (PHIRE) Program at the University of Pittsburgh. The
five Cluster O phages have similar genome lengths (69.8–72.1 kbp) and all contain unusually
short (4-nucleotide) 3’ single-stranded terminal extensions (Table 1). They have 122–128 pre-
dicted protein-coding genes and do not contain tRNA or tmRNA genes (Table 1). The five ge-
nomes are closely related at the nucleotide level (Fig. 1) and share high levels of average
nucleotide identity (Table 2) that do not warrant division into subclusters. The Cluster O
phages are not closely related to other mycobacteriophages although there is nucleotide se-
quence similarity to Subcluster I1 phages such as Brujita and to a lesser extent subcluster F1
phages such as GUmbie (Fig. 1). The GC% contents are similar toM. smegmatis (which is
67.4% GC; Table 1) as are the codon usage profiles (data not shown).

All five Cluster O phages have similar virion morphologies and are members of the Sipho-
viridae containing long, flexible non-contractile tails approximately 248±8 nm in length. How-
ever, they have unusual prolate heads with a length of 165±2 nm and width of 38±1 nm
(length:width ratio of 4:1; Fig. 2).

Table 1. Cluster O Mycobacteriophages.

Phage Name Accession # Genome Length (bp) GC% Overhang Sequence # ORFs Location

Catdawg KF017002 72108 65.4 GTGT 128 Radnor, PA USA

Corndog AY129335 69777 65.4 GTCT 124 Pittsburgh, PA USA

Dylan KF024730 69815 65.4 GTGT 122 Durban, South Africa

Firecracker JN698993 71341 65.5 GTGT 127 Santa Cruz, CA USA

YungJamal KJ829260 70214 65.3 GTCT 124 Pittsburgh, PA USA

doi:10.1371/journal.pone.0118725.t001

Cluster O Mycobacteriophages
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Cluster O Genome Organizations
The five Cluster O genomes share similar organizations but differ with a variety of small inser-
tions and deletions corresponding to one or a small number of genes (S1 Fig.; Figs. 3–7). The
genomes contain three blocks of genes that likely correspond to transcriptional units. The first
is a group of 10–12 leftwards-transcribed genes of mostly unknown functions at the left end of
the genomes. The second is a large group of rightwards-transcribed genes (e.g. Corndog 11–72)

Fig 1. Dotplot comparison of Cluster Omycobacteriophages. The five Cluster O phages along with GUmbie (Subcluster F1) and Brujita (Subcluster I1)
were compared using Gepard [13] and the dotplots displayed at two different levels of sensitivity and contrast in the upper right and lower left triangles.

doi:10.1371/journal.pone.0118725.g001

Cluster O Mycobacteriophages
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Table 2. ANI values for cluster O phages.

Catdawg Corndog Dylan Firecracker YungJamal

Catdawg 1 0.977 0.978 0.973 0.977

Corndog 0.977 1 0.987 0.987 0.991

Dylan 0.978 0.987 1 0.987 0.982

Firecracker 0.973 0.987 0.987 1 0.985

YungJamal 0.977 0.991 0.982 0.985 1

doi:10.1371/journal.pone.0118725.t002

Fig 2. Cluster Omycobacteriophage virion morphologies. A. Electron micrographs of Cluster O phages.
Scale bar corresponds to 100 nm. B. SDS-PAGE analysis of Corndog virions.

doi:10.1371/journal.pone.0118725.g002
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containing the virion structure and assembly genes as well as the lysis cassette, although this is
interrupted by up to four instances of a small number of small leftwards-transcribed genes. A
third set of ~50 genes (e.g. Corndog 75–124) is transcribed leftwards, and a single gene at the
extreme right end of the genomes is transcribed rightwards (Figs. 3–7).

Database comparison and HHPred searches reveal putative functions for fewer than 20% of
the genes, although additional virion structure and assembly proteins are predicted based on
synteny (Figs. 3–7). Unusually, the large terminase subunit gene is displaced ~14 kbp from the
left cohesive end and an O-methyltransferase gene, two glycosyltransferase genes and a puta-
tive N-acetylglucosaminyltransferase gene are located between the portal and the capsid matu-
ration protease genes. Of the small leftwards-transcribed genes within the virion structural
operon, only one—a putative DNA binding protein (e.g. Corndog 53)—has a predicted func-
tion. Five genes within the long leftwards-transcribed region encode proteins with predicted
functions including a DNA binding protein, a beta clamp subunit of DNA Polymerase III, a
Ku-like protein, an AAA ATPase, and a ParB-like domain protein.

Fig 3. Genomemap of Mycobacteriophage Corndog. The genome of phage Corndog is represented as a scale bar (major intervals: 1 kbp) with predicted
genes shown as boxes either above (rightwards transcribed) or below (leftwards transcribed). Gene number is shown within each box and the phamily
designation is shown either above or below with the number of phamily members shown in parentheses. Putative gene functions are indicated. The positions
of putative SigA-like promoters (PL1—PL6 and PR1—PR3) are shown as large arrows and terminators (t) are indicated. Small vertical arrows show the
locations of the palindromic repeat 50-TGTTCGGNNNCCGAACA. Gene products identified by mass spectrometry (with at least two high confidence peptides
per product) in twice CsCl banded particles (P) or from a once-banded lysate (L) are indicated, as well as three additional proteins identified in infected cells
(I) not identified in the other samples. Proteins gp11, gp33, gp77, and gp102 had multiple high quality spectra (2, 2, 2, and 4 respectively) of a single
peptide each.

doi:10.1371/journal.pone.0118725.g003

Cluster O Mycobacteriophages
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Predicted gene expression elements
The prediction of mycobacteriophage promoter locations is complicated because while some
are related to mycobacterial SigA promoters [14–16], others appear not to be [17]. However,
all five Cluster O phages contain at least eight strongly predicted SigA-like promoters, two
rightwards facing (PR2—PR3) and six facing leftwards (PL1—PL6); Corndog, Dylan, and Yung-
Jamal have an additional rightwards-facing promoter (PR1) upstream of PR2. PL1 and PR2 tran-
scribe divergently from the intergenic region located ~5 kbp from the left end and both are
predicted to express leaderless mRNAs with the transcription +1 site coinciding with the first
base of the first codon of the downstream gene. These intergenic regions are generally much
more AT-rich than the rest of the genomes. Promoter PL2 that transcribes the leftward facing
gene in the structural operon is similarly organized with respect to the start codon of the down-
stream gene (e.g. Corndog 53). Four leftwards promoters are situated within the long span of
leftwards transcribed genes at the right side of the genomes, suggesting that these constitute at
least four separate operons; PL6 is within coding regions (e.g. Corndog 120) but is strongly pre-
dicted (50-TGTCAA—17 bp—TAGAAT).

Fig 4. Genomemap of Mycobacteriophage Catdawg. The genome of phage Catdawg is represented as a scale bar (major intervals: 1 kbp) with predicted
genes shown as boxes either above (rightwards transcribed) or below (leftwards transcribed). Gene number is shown within each box and the phamily
designation is shown either above or below with the number of phamily members shown in parentheses. Putative gene functions are indicated. The positions
of putative SigA-like promoters (PL1—PL6 and PR1—PR3) are shown as large arrows. Small vertical arrows show the locations of the palindromic repeat 50-
TGTTCGGNNNCCGAACA. Catdawg proteins identified in a phage lysate using LC-MS/MS with at least two high confidence peptides per product are
indicated (L).

doi:10.1371/journal.pone.0118725.g004

Cluster O Mycobacteriophages
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The Cluster O genomes have three motifs with the potential to form stem-loop RNA struc-
tures that play roles in modulating transcription [18]. The first is located at the extreme left
ends of the genomes (Corndog coordinates 62–101) such as to terminate leftwards transcrip-
tion. It contains a 13 bp stem-loop (with a 1 bp bulge) followed by 50-TTTGT. The second is to
the right of the major tail subunit gene (e.g. Corndog 49; coordinates 25166–25195) and has a
12 bp stem (with a 1 bp bulge), is followed by 50-TTTCT and likely acts as terminator of right-
wards transcription. The third is located between Corndog genes 83 and 84 (Corndog coordi-
nates 51076–51107) and forms a predicted RNA structure with an 18 bp stem and an
associated T-rich region that could act as a terminator of leftwards transcription.

A conserved repeated sequence in Cluster O mycobacteriophages
The dot plot genome comparison (Fig. 1) suggests the presence of a small repeated sequence
present many times in each of the Cluster O genomes. The conserved 17 bp sequence contains
a 7bp inverted repeat separated by 3 bp (50-TGTTCGGNNNCCGAACA) and is present 34
times in Corndog (Fig. 8) and similarly in the other Cluster O phages. The inverted repeat se-
quences are invariant among the 34 Corndog sites (there are three additional sites varying at

Fig 5. Genomemap of Mycobacteriophage Dylan. The genome of phage Dylan is represented as a scale bar (major intervals: 1 kbp) with predicted genes
shown as boxes either above (rightwards transcribed) or below (leftwards transcribed). Gene number is shown within each box and the phamily designation
is shown either above or below with the number of phamily members shown in parentheses. Putative gene functions are indicated. The positions of putative
SigA-like promoters (PL1—PL6 and PR1—PR3) are shown as large arrows. Small vertical arrows show the locations of the palindromic repeat 50-
TGTTCGGNNNCCGAACA.

doi:10.1371/journal.pone.0118725.g005

Cluster O Mycobacteriophages
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one position), and although there is variation in the central three nucleotides, 50-TTT (or 50-
AAA) is the most common, present in 29 of the 34 sites (Fig. 8). However, there is little evi-
dence to support meaningful site orientation based on the central trinucleotide asymmetry, at
least with regards to the direction of transcription; for example, of the 23 sites within the left-
wards operon at the genome right end—Corndog genes 76–121–14 have 50-TTT and 6 have 50-
AAA on the top strand (Fig. 8).

Most of the sites are in similar positions in all five genomes, although there are informative
departures of two types. First, there are several instances where there is apparent loss of a site
because of a single base change in one of the repeats. One example is a site in Corndog, Dylan,
Firecracker and YungJamal immediately to the left of the methylase genes (e.g. Corndog 6;
Fig. 3), which in Catdawg, has a single base change in the lefthand 7 bp segment. The change is
non synonymous for the downstream gene (e.g. Corndog 5), and the sequence diverges down-
stream of it. A second example is the loss of a site in Catdawg in the 3’ end of the larger tail
chaperone gene (e.g. Catdawg 53, Fig. 4) because of a change at one position that is synony-
mous for the reading frame. A second type of departure is where recombination between sites
appears to have contributed to insertions or deletions. One example is the presence of a ~550
bp segment between Catdawg genes 95 and 97 that is flanked by two of the repeats. In the other

Fig 6. Genomemap of Mycobacteriophage Firecracker. The genome of phage Firecracker is represented as a scale bar (major intervals: 1 kbp) with
predicted genes shown as boxes either above (rightwards transcribed) or below (leftwards transcribed). Gene number is shown within each box and the
phamily designation is shown either above or below with the number of phamily members shown in parentheses. Putative gene functions are indicated. The
positions of putative SigA-like promoters (PL1—PL6 and PR1—PR3) are shown as large arrows. Small vertical arrows show the locations of the palindromic
repeat 50-TGTTCGGNNNCCGAACA.

doi:10.1371/journal.pone.0118725.g006

Cluster O Mycobacteriophages
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four genomes there is only a single copy of the repeat, and a simple explanation is that Catdawg
represents the ancestral state with the other genomes having a deletion resulting from recombi-
nation between the two repeats. In a second example, the region immediately downstream of
the PL6 promoter in Corndog appears to represent the ancestral state with all other genomes
having a deletion created by recombination between the two Corndog repeats immediately
downstream of PL6.

Fourteen of the Corndog repeats are within short intergenic regions and several others are
close to the 50 end of the coding region and the annotated start site choice has yet to be con-
firmed (see below; Fig. 8). Eleven of the sites are clearly within coding regions (in Corndog
genes 12, 36, 46, 55, 68, 76, 108, 111, 117, 120, and 121). However, the intergenic sites are not
randomly distributed across the genome, and they are predominantly (11 of 14 in Corndog) in
the leftwards-transcribed region of Corndog genes 76–121 (Fig. 3). The site symmetry suggests
these represent binding sites for dimeric regulatory proteins, and we note there are three pre-
dicted DNA binding proteins encoded in each of the genomes (e.g. Corndog gp53, gp76, and
gp90). However, the possible regulatory consequences are not clear. Although four of the sites
are near predicted promoters, most are not, and a transcriptional regulatory function for these
repeats seems unlikely. The site is not present inM. smegmatismc2155 orM. tuberculosis

Fig 7. Genomemap of Mycobacteriophage YungJamal. The genome of phage YungJamal is represented as a scale bar (major intervals: 1 kbp) with
predicted genes shown as boxes either above (rightwards transcribed) or below (leftwards transcribed). Gene number is shown within each box and the
phamily designation is shown either above or below with the number of phamily members shown in parentheses. Putative gene functions are indicated. The
positions of putative SigA-like promoters (PL1—PL6 and PR1—PR3) are shown as large arrows. Small vertical arrows show the locations of the palindromic
repeat 50-TGTTCGGNNNCCGAACA.

doi:10.1371/journal.pone.0118725.g007

Cluster O Mycobacteriophages
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Fig 8. Conserved repeats sequences in the Corndog genome. The Corndog genome contains multiple repeats of a 17 bp sequence composed of two 7
bp inverted motifs separated by three base pairs. The 34 sites are aligned, showing the top strand (and flanking 4 bp) with the 7 bp motifs are highlighted in
yellow; the coordinates shown correspond to the 17 bp sequence. The genes flanking the repeat (black) or the genes containing the repeat (blue) and their
directions of transcription are shown. Fourteen of the 34 sites (# 6, 9, 11, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, and 34) are located between open reading
frames, ten (#1, 3, 7, 8, 15, 20, 28, 29, 31, and 33) are within open reading frames but close to the 50 end of the gene (and could be intergenic if the start site is

Cluster O Mycobacteriophages
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genomes, or the genomes of other mycobacteriophages; there are two copies inMycobacterium
sp 0501390 [20].

Identification of Cluster O phage proteins by SDS-PAGE and mass
spectrometry
SDS-PAGE analysis of Corndog virion proteins shows a prominent band of 40 kDa and at least
six minor proteins (Fig. 2B). Further analysis of CsCl-purified (twice banded) Corndog virions
by LC-MS/MS identified twenty-one proteins with high confidence (�2 peptides/protein
Fig. 3, Table 3). All of these are encoded by genes in the interval 34–67 with the exception of
gp13 (Fig. 3) and include the capsid (gp41) and major tail subunits (gp49), portal (gp34), prote-
ase (gp39), putative tail capping and head-tail connector proteins (gp42, gp43, gp45, gp47),
tapemeasure protein (gp57) and minor tail proteins (gp58—gp67), as well as gp52 which is of
unknown function and transcribed opposite to the other virion genes (Fig. 3). We note that
other proteins encoded within this region including the O-methyltransferase (gp35), the glyco-
syltransferases (gp36, gp37) and the N-acetylglucosaminyltransferase (gp38) were not identi-
fied in the virions. LC-MS/MS of Corndog particles purified through a single round of CsCl
banding identified all of the same proteins and another 36 Corndog-encoded proteins that are
presumably contaminants from lysed cells (Table 3). For an additional four proteins (gp11,
gp3, gp77, and gp102) we identified multiple spectra (2, 2, 2, and 4 respectively) but only from
a single unique peptide each. We also analyzed extracts of Corndog-infected cells by LC-MS/
MS and identified an additional three gene products (gp90, gp96, and gp122) not found in the
other samples (Fig. 3, Table 3). The proportion of predicted products identified by LC-MS/MS
(48%) is somewhat lower than for similar experiments with mycobacteriophage Patience (75%)
[21]. We also analyzed an unpurified lysate of Catdawg by LC-MS/MS using both chymotryp-
sin and trypsin cleavage (Table 4). A total of 63 proteins were identified (49% of total pre-
dicted), with a profile that is similar but not identical to the Corndog proteins.

The LC-MS/MS analysis unfortunately provides few clues as to the basis of the prolate cap-
sids of the Cluster O phages. The capsid subunits (Corndog gp41) are predicted to be structur-
ally similar to the isometric HK97 capsid subunit by HHPred [22] analysis, including the N-
terminal 102-residue delta domain that is cleaved and lost during capsid maturation [23, 24].
The LC-MS/MS analysis reveals very few Corndog capsid subunit peptides from either purified
particles or late-infected cells, perhaps reflecting poor trypsin digestion of the high molecular
weight covalently crosslinked protein seen by SDS-PAGE (Fig. 2B), as seen in HK97 [25]. How-
ever, two of the six Corndog virion capsid peptide spectra identified correspond to the delta do-
main suggesting that it may remain during capsid maturation. Poor recovery of capsid
peptides could also result from modifications whose masses are not readily predictable—such
as complex sugar additions—and escape LC-MS/MS deconvolution. Major capsid subunit pep-
tides were well-represented in the Catdawg sample, but many of these could have come from
unassembled procapsids. We note that six Corndog proteins (gp5, gp17, gp52, gp59, gp61) and
five Catdawg proteins (gp14, gp33, gp46, gp56 and gp58) have N-terminally acetylated peptides
all at a threonine encoded by the second codon. The functional consequences of this—if any—
are not known.

not correctly identified), and ten (#2, 4, 5, 10, 12, 25, 26, 27, 30, and 32) are in the middle or towards the 3’ ends of genes (and the gene is not shown). An
additional three sites containing a single base change are not shown. The weblogo at the bottom shows alignment of all 34 sites and related sites identified
by MEME [19]; both orientations are compiled due to the inverted repeat such that the flanking 4 bp is shown only on the left. Note that the central three
nucleotide spacer is A/T rich, with the most common sequence being AAA or TTT (29 of the 34 sites). There is a slight preference for the orientation of the site
to be such that the AAA is on the top strand when the site is transcribed in the rightwards direction. The flanking four nucleotides are G/C rich.

doi:10.1371/journal.pone.0118725.g008
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Table 3. Corndog peptides identified by mass-spectrometry.

Coordinates Product/ Function Corndog Particles1 Infected cells Total Peptides2 Start site Confirmed3

1x CsCl 2x CsCl

28380–32765 gp 57 tapemeasure 1266 93 100 1459 See text

36294–37142 gp 60 minor tail protein 506 38 32 576 Confirmed

22037–22642 gp 43 444 63 60 567 Confirmed

32803–34521 gp 58 minor tail protein 525 26 13 564 Reassigned

37139–39649 gp 61 minor tail protein 328 61 59 448 Confirmed, acetyl

15549–16778 gp 34 portal 358 35 49 442 Insufficient data

39642–41132 gp 62 minor tail protein 280 35 28 343 Confirmed

25493–25684 gp 52 175 35 49 259 Confirmed, acetyl

19596–20261 gp 39 capsid mat. protease 209 22 23 254 Consistent

24316–25131 gp 49 major tail 174 43 19 236 Confirmed

34518–36254 gp 59 minor tail protein 187 23 5 215 Confirmed, acetyl

41144–41545 gp 63 minor tail protein 144 17 12 173 Confirmed

41960–42184 gp 65 104 3 0 107 Confirmed

41549–41950 gp 64 minor tail protein 89 9 8 106 Confirmed

23417–23842 gp 47 54 5 10 69 Insufficient data

56866–57207 gp 93 52 0 15 67 Confirmed

20547–21779 gp 41 major capsid 54 6 5 65 Confirmed

21779–22027 gp 42 56 5 0 61 Confirmed

42385–43071 gp 67 34 5 1 40 Confirmed

5024–5311 gp 13 31 2 0 33 Confirmed

42197–42385 gp 66 25 3 0 28 Processed?

22796–23155 gp 45 15 5 6 26 Insufficient data

17352–18221 gp 36 22 0 0 22 Confirmed

1111–1581 gp 5 19 0 0 19 Confirmed, acetyl

60504–60770 gp 124 18 0 0 18 Confirmed

26207–26761 gp 54 tail assembly chaperone 18 0 0 18 Insufficient data

11715–12149 gp 27 16 0 0 16 Consistent

12449–12778 gp 29 16 0 0 16 Consistent

6409–7074 gp 17 15 0 0 15 Confirmed, acetyl

23835–24287 gp 48 10 1 4 15 Insufficient data

53972–54247 gp 89 13 0 0 13 Confirmed

57197–57469 gp 94 12 1 0 13 Reassigned

23152–23472 gp 46 12 0 0 12 Insufficient data

18907–19527 gp 38 glycosyltransferase 11 0 0 11 Insufficient data

51112–52290 gp 84 DNA pol Beta subunit 3 0 8 11 Insufficient data

18218–18910 gp 37 glycosyltransferase 10 0 0 10 Insufficient data

25320–25493 gp 51 10 0 0 10 Insufficient data

3790–4524 gp 12 9 0 0 9 Consistent

7098–7472 gp 18 9 0 0 9 Insufficient data

971–1111 gp 4 8 0 1 9 Confirmed

53737–53964 gp 88 8 1 0 9 Insufficient data

11362–11653 gp 26 7 0 0 7 Reassigned

62493–62897 gp 103 6 0 0 6 Insufficient data

64188–64442 gp 109 6 0 0 6 Confirmed

52540–52812 gp 86 5 1 0 6 Confirmed

(Continued)
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In general, the LC-MS/MS analysis provides information about the translational start sites,
and for 26 Corndog genes the annotated start site is confirmed (Table 3), and in 4 others the
data is consistent with the predicted start but does not discern between the predicted start site
and other possible start sites. For three genes (Corndog 26, 58, and 94) the LC-MS/MS data
support re-annotation of the start sites (to positions 11,653, 32,803, and 57,469 respectively;
Table 3). For one protein, Corndog gp66, 28 peptide spectra were obtained, but all correspond
to the C-terminal 34 residues of the predicted 62-residue product suggesting that it may be
post-translationally processed (Table 3). For its Catdawg homologue (gp63), 58 spectra were
recovered all of which—with one exception that could be derived from an uncleaved precursor
—are in the same C-terminal moiety. We also identified peptides for a previously unannotated
Corndog gene (124) encoded between genes Corndog 97 and 98 (Table 3).

LC-MS/MS data confirms annotated start sites for 26 Catdawg genes and in nine others the
data is consistent with the predicted start does but does not discern between the predicted start
site and other possible start sites (Table 4). For one gene (Catdawg 122) the LC-MS/MS data
support re-annotation of the start site to position 69163 (Table 4).

Alignment of the Cluster O genome maps (S1 Fig., Figs. 3–7) shows an evident disparity in
the annotation of the tape measure protein (tmp) genes. In Catdawg and Dylan the predicted
translational start site overlaps the termination codon of the upstream tail assembly chaperone
gene, and the LC-MS/MS data are consistent with the annotated Catdawg tmp start site
(Table 4). However, in Corndog, Firecracker, and YungJamal, an HNH gene is inserted be-
tween the tail assembly chaperone and tmp, resulting in tmp being annotated to begin at the
first available start codon ~ 600 bp downstream, leaving a non-coding gap (Fig. 9A). However,
LC-MS/MS of Corndog proteins identified many peptide spectra corresponding to the up-
stream region of the tmpORF indicating that translation begins upstream. The most N-

Table 3. (Continued)

Coordinates Product/ Function Corndog Particles1 Infected cells Total Peptides2 Start site Confirmed3

1x CsCl 2x CsCl

57466–58266 gp 95 5 0 1 6 Insufficient data

61585–61767 gp 100 5 0 0 5 Insufficient data

49097–49528 gp 81 5 0 0 5 Insufficient data

50364–50996 gp 83 5 0 0 5 Insufficient data

16775–17359 gp 35 O-methyltransferase 4 0 0 4 Confirmed

52318–52539 gp 85 4 0 0 4 Insufficient data

8227–10587 gp 22 3 0 0 3 Insufficient data

10777–10983 gp 24 3 0 0 3 Insufficient data

54424–55932 gp 90 ParB-like 0 0 3 3 Insufficient data

55929–56267 gp 91 3 0 0 3 Insufficient data

58355–60055 gp 96 AAA-ATpase 0 0 3 3 Insufficient data

68942–69664 gp 122 0 0 2 2 Insufficient data

439–651 gp 2 2 0 0 2 Insufficient data

27158–27757 gp 56 HNH endonuclease 2 0 0 2 Confirmed

2707–3042 gp 9 2 0 0 2 Confirmed

1Corndog virion particles were purified through one (1x) or two (2x) CsCl equilibrium density gradients.
2Table is sorted by total number of peptides assigned by stringent criteria. See text for details and thresholds.
3Translation start sites are indicated as confirmed, consistent with the annotation, warranted reassignment of the start site (shown in coordinates), or

insufficient data to confirm; acetyl, if more than 50% N-terminal peptides acetylated.

doi:10.1371/journal.pone.0118725.t003
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Table 4. Identification of Catdawg proteins by mass spectrometry.

Coordinates Product/Function Chymotrypsin Trypsin Total Peptides1 Start site confirmed2

23858 to 24673 gp47 major tail 2516 3056 5572 Confirmed

26700 to 31724 gp54 tape measure 1798 1662 3460 Consistent

20089 to 21321 gp39 major capsid 1634 510 2144 Confirmed

31762 to 33480 gp55 minor tail protein 935 963 1898 Confirmed

15091 to 16320 gp32 portal 1039 1134 2173 Consistent

21594 to 22184 gp41 641 1145 1786 Confirmed

33524 to 35260 gp56 minor tail protein 454 763 1217 Confirmed, acetyl

35300 to 36148 gp57 minor tail protein 586 628 1214 Confirmed

36145 to 38655 gp58 minor tail protein 637 399 1036 Confirmed, acetyl

38648 to 40138 gp59 D-ala-D-ala-carboxypeptidase 363 424 787 Confirmed

41391 to 42077 gp64 359 218 577 Confirmed

22338 to 22697 gp43 170 124 294 Confirmed

40150 to 40551 gp60 164 170 334 Confirmed

19138 to 19803 gp37 capsid maturation protease 102 266 368 Consistent

23377 to 23829 gp46 78 139 217 Confirmed, acetyl

40555 to 40956 gp61 124 180 304 Confirmed

22959 to 23384 gp45 113 149 262 Insufficient data

42246 to 43466 gp66 lysA 44 198 242 Confirmed

41203 to 41391 gp63 20 38 58 Insufficient data

40966 to 41190 gp62 3 66 69 Confirmed

6395 to 6769 gp15 3 48 51 Insufficient data

4747 to 5496 gp12 42 42 Insufficient data

25226 to 25035 gp50 8 39 47 Insufficient data

5733 to 6371 gp14 6 28 34 Confirmed, acetyl

16894 to 17763 gp34 glycosyltransferase 34 34 Insufficient data

4467 to 4754 gp11 3 18 21 Confirmed

52190 to 51225 gp81 2 29 31 Consistent

358 to 152 gp1 9 8 17 Confirmed

1198 to 821 gp4 2 28 30 Insufficient data

7521 to 9884 gp19 DNA primase/polymerase 26 26 Insufficient data

46085 to 46525 gp72 18 18 Insufficient data

43468 to 44508 gp67 LysB 19 19 Consistent

46901 to 46494 gp73 HTH DNA binding protein 18 18 Confirmed

25678 to 25223 gp51 21 21 Insufficient data

11045 to 11479 gp24 23 23 Consistent

64667 to 64260 gp106 2 8 10 Consistent

65071 to 64667 gp107 10 10 Confirmed

66856 to 66599 gp113 15 15 Confirmed

61447 to 59669 gp97 AAA ATPase 3 3 Insufficient data

54718 to 54491 gp88 8 8 Confirmed

22709 to 23014 gp44 10 10 Insufficient data

16317 to 16901 gp33 O-methyl transferase 5 6 11 Confirmed, acetyl

59020 to 58220 gp95 9 9 Insufficient data

18449 to 19069 gp36 3 5 Insufficient data

55100 to 54726 gp89 5 8 Insufficient data

49941 to 49309 gp79 8 12 Confirmed

(Continued)
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terminal peptides have the sequence N-AIHIDIYAHLQK and are not generated by tryptic di-
gestion. There are no canonical translation start sites between these peptides and the most up-
stream termination codon (Fig. 9A), and the threonine codon immediately upstream of this
peptide (50-ACG) is in the corresponding position to the tmp 50-ATG start codon in Dylan and
Catdawg (Fig. 9A). We have been unable to identify any RNA-level splicing event that would
suggest that the HNH gene is part of an intron (Fig. 9B) and the most likely possibilities are
that either the 50-ACG codon is used for translation initiation or that translation begins up-
stream and tmp translation involves a ribosome bypassing event [26]. We are not aware of any
other mycobacterial genes initiating translation with ACG and attempts to sequence the tmp
N-terminus by Edman degradation have failed, presumably due to modification; the five N-ter-
minal residues from another protein (gp43) from the same gel were readily determined.

Mobile Elements in Cluster O phages
We noted previously that Corndog contains a truncated version of a Mycobacteriophage Mo-
bile Element (MPME) (encoding Corndog gp25) found in phage genomes within an assort-
ment of clusters (27). MPMEs are small (~440 bp) and include a 123-residue ORF, and two
types (MPME1 and MPME2) have been described [27]. Phage YungJamal shares the same se-
quence as Corndog, which includes the left inverted repeat (IR-L) and 363 bp of MPME1,
whereas Catdawg and Firecracker contain a similar segment of the MPME element but have
different flanking sequences reflecting deletions of the Corndog sequence. Dylan does not con-
tain an MPME fragment at this site but also does not simply correspond to a pre-integration
site either, as there is a 20 bp separation between the Corndog/Dylan homology and IR-L rath-
er than the typical 6 bp [27].

Table 4. (Continued)

Coordinates Product/Function Chymotrypsin Trypsin Total Peptides1 Start site confirmed2

44814 to 45113 gp69 12 6 Insufficient data

69163 to 68768 gp122 6 2 Reassigned

57514 to 57065 gp92 2 5 Insufficient data

62494 to 62105 gp100 5 4 Insufficient data

17760 to 18452 gp35 glycosyltransferase 4 7 Insufficient data

47213 to 46980 gp74 7 4 Confirmed

57961 to 57620 gp93 2 2 4 Insufficient data

62098 to 61778 gp99 4 6 Insufficient data

64263 to 63934 gp105 6 5 Consistent

25749 to 26303 gp52 tail assembly chaperone 5 6 Insufficient data

21321 to 21569 gp40 6 3 Insufficient data

3150 to 2665 gp9 Endo VII protein 3 2 Insufficient data

51220 to 50057 gp80 DNA pol III beta subunit 2 3 Insufficient data

10086 to 10280 gp21 3 2 Insufficient data

6762 to 7073 gp16 2 4 Confirmed

49266 to 48541 gp78 4 2 Insufficient data

63941 to 63762 gp104 2 2 Consistent

1Table is sorted by total number of peptides assigned by stringent criteria. See text for details and thresholds.
2Translation start sites are indicated as confirmed, consistent with the annotation, warranted reassignment of the start site (shown in coordinates), or

insufficient data to confirm; acetyl, if more than 50% N-terminal peptides acetylated.

doi:10.1371/journal.pone.0118725.t004
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Interestingly, Dylan contains a complete MPME element inserted to the right of the major
tail subunit gene, and oriented in the opposite direction (i.e. IR-R proximal to the major tail
subunit gene; Fig. 5). This MPME element is an apparent hybrid between MPME1 and
MPME2 sequences presumably generated by recombination such that the 50 half corresponds

Fig 9. Unusual translation initiation of the Corndog tape measure protein gene. A. Two organizations of the tape measure genes are present in the
Cluster O phages. In Dylan and Catdawg the tmp gene is predicted to start translation immediately downstream of the tail assembly chaperone genes that
are translated via a programmed translational frameshift. In contrast, Corndog, Firecracker, and YungJamal have a non-coding gap prior to the tmp start site.
However, LC-MS/MS identified Corndog peptides corresponding to this gap and the sequence of the most N-terminal peptides are shown in bold type.
Translation presumably either initiates at the ACG threonine codon or starts further upstream and involves a ribosome bypass event. B. RT-PCR of Corndog
transcripts. PCR products were generated using a Corndog lysate (lane 2) or RNA isolated from uninfected cells (lanes 3 and 4), or at different times after
infected by Corndog: 30 min (lanes 5 and 6), 2.5 h (lanes 7 and 8), 3.5 h (lanes 9 and 10), and 4.5 h (lanes 11 and 12. Lanes 3, 5, 7, 9, and 11 are controls
lacking reverse transcriptase. A DNA ladder marker (M) is shown with sizes in base pairs. Genomic DNA and unspliced RNAs generate an expected product
of ~1.7 kbp. No smaller spliced products are observed.

doi:10.1371/journal.pone.0118725.g009
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to MPME1 and the 3’ half to MPME2 (Fig. 10). The IR-L of this MPME element (at coordinate
24957) is separated by 6 bp from sequence identity in Corndog (coordinate 25300) and the
other phages, indicating this to be the site of the insertion. At the opposite end, there are 14 bp
between IR-R and the shared sequences suggesting either differences in the pre-integration site
or rearrangements associated with the insertion.

All five Cluster O genomes contain a homing endonuclease-like gene (HNH) gene upstream
from the terminase (e.g. Corndog 29) implicated in DNA packaging [28], and two additional
HNHs are present in subsets of the genomes. One of these corresponds to the insertion up-
stream of the tape measure protein gene as discussed above; the other is present in three of the
genomes (Corndog, Catdawg, YungJamal) located downstream of the large terminase subunit
gene (e.g. Corndog 33). Dylan and Firecracker lack this HNH gene and comparisons suggest a
simple insertion 1–3 bp downstream of the terminase stop codon.

Other features of Cluster O genomes
There are several other notable features of the Cluster O genomes. First, at the left ends of the
genomes there are two adjacent leftwards-transcribed genes coding for domains of cytosine
methyltransferases (Corndog genes 6 and 7 and their relatives). Corndog gp7 has a strong
HHPred match to the N-terminal part ofHaeIII methylase as well as BLASTP matches to
other methylases (including those not encoded by mycobacteriophages) extending across the
entire protein span of gp7 (~195 residues) to within a few residues of the gp7 C-terminus. The
53 C-terminal residues of Corndog gp6 (and relatives) are predicted strongly by HHPred to

Fig 10. Dylan MPME element. Phage Dylan contains a Mycobacteriophage Mobile Element (MPME) inserted between genes 46 and 48. The Dylan MPME
contains an open reading frame (47) that is transcribed leftwards, such that the MPME left inverted repeat (IR-R) is 48-proximal. Alignment of the Dylan
MMPE sequence with MPME1 and MPMP2 [27] shows that one half (green box) is identical to MPME1 and the other half (yellow box) is identical to MPME2.
The Dylan MPME is thus a hybrid of MPME1 and MPME2, presumably generated by homologous recombination with the intervening sequence (grey box).

doi:10.1371/journal.pone.0118725.g010
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correspond to the three C-terminal alpha helices of HaeIII methylase. However, the start site of
gene 6 is ambiguous, and not only is it the strongest ribosome binding site associated with a
start site located within the upstream (e.g. Corndog gene 7) open reading frame (Figs. 3–7), but
there is also coding potential in the gene 6 frame in the overlap region, notwithstanding con-
vincing conservation of the C-terminus of gp7 with numerous methylases. It is thus unclear
whether two products are made that assemble to form a methylase active site—and if so where
gp6 initiates from—or if a single product is expressed from a translational frameshift, a ribo-
some hop, or a spliced intron. However, RT-PCR analysis shows no evidence of splicing in this
region (data not shown), and products of these genes were not identified by mass spectrometry.
We note that similar arrangements of methylase gene segments are seen in other mycobacterio-
phages, and in phages of other hosts [29].

Fig 11. Sequence features of Cluster O genomes. A. The AT rich element between Corndog genes 12 and 13 is highlighted in cyan, and two sets of
flanking sequence repeats are shown in red and green. A similar arrangement of these sequences is observed in the other Cluster O phages. Residues in
these sequence elements that differ across the phages (in the case of the AT rich element), or from the repeat consensus sequences are shown in lower
case.B. A portion of Corndog genes 120 (underlined in black) and 121 (underlined in gray). The conserved T5CCT6GT6GT5 sequence is shown in cyan and
flanking sequence repeats are shown in green and red. Residues in these sequence elements that differ across the phages (in the case of the T rich
element), or from the repeat consensus sequences are shown in lower case.

doi:10.1371/journal.pone.0118725.g011
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Secondly, the Cluster O phages encode several proteins with predicted transmembrane do-
mains. Most contain only a single predicted membrane spanning domain and may not be
membrane associated. However, downstream of the lysis cassette are two genes (e.g. Corndog
73 and 74) each encoding products with four predicted transmembrane domains that are
strongly predicted to be membrane associated. Neither have relatives in other mycobacterio-
phages, and their roles are unclear although they could also play a role in lysis.

The Cluster O genomes contain two AT-rich sequences, which are unusual among the GC
rich mycobacteriophage genomes. The first, in the gap between the divergently transcribed op-
erons on the lefthand side of the genome (i.e. Corndog genes 12 and 13) is a 39 nucleotide se-
quence consisting of 37 A or T residues that varies at only a single residue across the 5 Cluster
O genomes. The second AT-rich sequence occurs at the far right hand side of the Cluster O ge-
nomes. In Corndog, this sequence lies within gene 120 whose central part is AT-rich and in-
cludes the sequence 50-T5CCT6GT6GT5. Corndog 120 is poorly conserved among Cluster O
genomes and we did not observe any peptides that could be encoded by this sequence in our
MS data, raising the question of its assignment, but this AT-rich sequence is identical in all five
phages. It is located 35 bp downstream of the putative PL6 promoter and could play a regulato-
ry role. Interestingly, a complex set of sequence repeats occurs to the right of each of these AT-
rich elements (Fig. 11), and it is plausible that one or the other of these represents the phage or-
igin of replication.

Insights into phage genome evolution
Several regions of the Cluster O genomes differ in gene content as a consequence of deletions
or insertions, typically by one or a small group of genes. These gene content differences occur
in a variety of genomic contexts and apparently reflect relative recent horizontal exchange
events rather than whole genome ancestries.

There are two examples of a gene present in one genome but absent from the other four ge-
nomes. Corndog gene 14 is small (126 bp) but HHPred analysis confidently predicts that gp14
folds similarly to the mycobacteriophage Pukovnik Xis protein [30] and is likely to be a DNA
binding protein. Genome comparisons show that Corndog 14 is flanked by a 17 bp direct re-
peat present only once in the other genomes (Fig. 12A). Either Corndog represents the ances-
tral state from which gene 14 has been deleted by homologous recombination between the
repeats, or Corndog has acquired 14 by recombination with a partner DNA carrying a se-
quence similar to the repeat.

A more complex relationship is seen with YungJamal gene 60, which is absent from the
other four genomes. YungJamal 60 is transcribed in the leftwards direction, opposite to the tail
genes that flank it and is of unknown function (Fig. 7). The gene is flanked by imperfect 24 bp
direct repeats of which just 14 bp are conserved, and Corndog, Firecracker and Dylan each
contain only a single copy of the repeat that is identical to the rightmost YungJamal copy
(Fig. 12B). The base differences between the leftmost copy of the repeat in YungJamal and
Corndog are such that the amino acid sequence of the products is maintained, with the excep-
tion of the C-terminal most residue (Fig. 12B). Catdawg differs from Corndog, Firecracker and
Dylan in that it contains a small insertion including a partial second copy of the repeat. A plau-
sible scenario is that Corndog, Firecracker and Dylan represent the ancestral state (and a ca-
nonical virion structural gene organization) into which YungJamal 60 was acquired by
recombination, which subsequently underwent deletion to give the Catdawg structure. This
then provides an evolutionary context for understanding the Catdawg genome that would not
have been possible without the other Cluster O relatives.

Cluster O Mycobacteriophages

PLOS ONE | DOI:10.1371/journal.pone.0118725 March 5, 2015 20 / 27



Among the various other insertions and deletions, we note that Corndog 10 and its homo-
logues in Firecracker and YungJamal are absent from Catdawg. The deletion in Catdawg re-
flects a loss of 281 bp relative to the other genomes, and an accompanying insertion of 15 bp of
unknown origin. There are no obvious repeated sequences flanking the deletion and the mech-
anism involved is unclear.

Discussion
The Cluster O mycobacteriophages are an interesting group of phages with several features not
found in other phages ofM. smegmatis. The most obvious of these is their prolate heads with a
4:1 length:width ratio. Prolate-headed phages within the Caudovirales are somewhat uncom-
mon, with the best-studied being T4, although the length to width ratio of T4 is relatively
small. However, phages with longer heads have been described for other hosts including phages
of Caulobacter (length:width ratios of 3.5:1–4.5:1) [31] and Lactobacillus [32–34] and a model

Fig 12. Insights into genome evolution. A. Insertion of Corndog gene 14. Cluster O genome comparisons show that Corndog gene 14 is missing from the
other four related genomes. A 17 bp direct repeat (bold type) flanks Corndog gene 14 but is present only once at the junction of Firecracker gene 12 and 13
and their homologues in Dylan, Catdawg and YungJamal. Termination codons are underlined and translation start codons are overlined. Regions of
nucleotide similarity are indicated by colored trapezoids. B. Insertion of gene 60 in YungJamal. YungJamal gene 60 encodes a protein of unknown function
and is absent in all four other Cluster O genomes. YungJamal 60 is transcribed leftwards and is flanked by imperfectly conserved 24 bp inverted repeats
(shown by arrows), but in which only 14 bp are conserved. However, Corndog (as well as Dylan and Firecracker) contains just a single copy of this repeat at
the junction of genes Corndog 58 and 59. Unusually the rightmost copy of the repeat in YungJamal (at the beginning of gene 61) is identical to the Corndog
sequence, whereas the leftmost repeat (at the end of gene 59) is a degenerate copy in which most of the base changes are synonymous, except for the C-
terminal residue. Termination codons are underlined and translation start codons are overlined; the sequences of both strands for the left component of
YungJamal are indicated to show the termination codon (underlined) of YungJamal 60. Catdawg lacks a homologue of YungJamal 60 but carries a small
insertion relative to Corndog, Dylan, and Firecracker, and has part of the rightmost YungJamal repeat. Catdawg and YungJamal sequences shared with
Corndog are shown in italic type. Sequences of nucleotide similarity are indicated by the colored trapezoids (Catdawg and Corndog, green; Corndog and
YungJamal, purple; Catdawg and YungJamal, red).

doi:10.1371/journal.pone.0118725.g012
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has been described for the structural organizations of icosahedral prolate capsids [35]. It is no-
table that HHpred predicts a subunit fold that is very similar to that of HK97, which forms an
isometric shell [36]. The genomic and proteomic analyses identified no unusual components of
the particles, such as proteins that might specifically determine capsid length, as tape measure
proteins do with tails. The prolate shape thus might be determined solely by the physical nature
of the capsomers [35].

Mass spectrometry reveals an unexpected dearth of Corndog capsid peptides, as capsid
monomers are expected to be the most abundant components of purified virions. Thirteen viri-
on proteins had more peptides than the capsid subunit, including most of the minor tail pro-
teins, the portal, and the proposed capsid protease. Although it is plausible that some peptides
were not identified because of covalent crosslinking as in HK97, it is possible that the mature
capsid subunits are modified such as to obscure the predicted peptide masses. Four genes be-
tween the portal and protease genes have plausible modification functions including an O-
methyltransferase (Corndog gp35), glycosyltransferase proteins (gp36, gp37), and a putative
N-acetylglucosaminyltransferase (gp38). All four were identified by LC/MS-MS in infected
cells and could add complex methyl and glycan modifications to the capsid with unpredictable
molecular masses.

The Cluster O phages carry an unusual array of 17 bp repeats of unknown function. They
are located throughout the genomes but are more densely positioned towards the right genome
ends. Many are intergenic, although about one-third of them are within coding regions. They
differ from the Start Associated Sequences (SAS) repeats in the Cluster K phages [37] in not
being closely linked to translational initiation sites, and are more similar in their distribution to
the stoperator sites in the Cluster A phages [16, 38]. However the Cluster A stoperator sites are
asymmetric and orientated with the direction of transcription, an important feature of their
proposed function in termination of transcription and silencing [16]. Moreover, we have not
been able to recover stable lysogens of Corndog or other Cluster O phages, and they do not en-
code an integrase or a parAB partitioning system (the parB-like domain proteins such as Corn-
dog gp90 are unlikely to be involved with genome stability) and are not obviously temperate, at
least inM. smegmatismc2155. However, the sites clearly have dyad symmetry and are predicted
to be bound by dimeric DNA binding proteins. Because the large majority of sites are not asso-
ciated with predicted promoters, the DNA binding interaction must be involved in a process
other than the regulation of transcription initiation. We also note that few, if any, of these
short repeats are involved in any of the insertions, deletions or rearrangement observed be-
tween the five Cluster O genomes.

Finally, comparative genomics and LC-MS/MS resolve the oddity of an apparent extended
non-coding gap in Corndog between the tapemeasure protein gene and the upstream gene,
which was similarly predicted in the Firecracker and YungJamal genomes. All three also share
the insertion of an HNH gene upstream of this apparent non-coding gap. LC-MS/MS analysis
shows that translation does indeed begin upstream, although where translation initiates re-
mains unclear, and we have been unable to determine the N-terminal sequence of the tape
measure protein by Edman degradation (data not shown). Because there is no commonly used
start codon (ATG, GTG, TTG) upstream of the most N-terminal peptides identified, tmp ex-
pression must use a non-canonical mechanism. Among the possibilities is the use of an unusual
codon for translation initiation—perhaps the ACG codon immediately upstream of the N-ter-
minal peptide—or by initiation of translation somewhere upstream coupled with a translation-
al bypass event. Regardless of which non-canonical mechanism is used, there is no obvious
reduction in the expression level of tmp in Corndog, and the three phages with this arrange-
ment (Corndog, Firecracker, and YungJamal) grow similarly to Catdawg and Dylan that use an
ATG start codon.
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In summary, the Cluster O mycobacteriophages represent an interesting group of closely re-
lated phages with a variety of interesting genomic features. The identification of a variety of
conserved features suggests novel and interesting regulatory features warranting
experimental investigation.

Materials and Methods

Electron Microscopy
Cluster O phage samples were spotted on 400 mesh carbon coated copper grids, stained with
1% uranyl acetate, and imaged with a Morgagni TEM.

Bioinformatic analyses
Bioinformatic analyses used DNAMaster (http://cobamide2.bio.pitt.edu/), Aragorn [39],
Gepard [13], HHpred [22], tRNAscan [40], and Phamerator [41]. The Phamerator database
used for genomic comparisons was Mycobacteriophage_292. Phams were built using BLASTP
and/or ClustalW, with similarity cut-offs e-values of 10-50 and 32.5% similarity or better as de-
scribed elsewhere [41]. Transmembrane domains were identified using SOSUI [42], TopPred
[43] and TMHMM [44]. Predicted SigA-like promoters were identified using promoter predic-
tion in DNAMaster set to search for sigma-70 binding sites. The search parameters were as fol-
lows: site and merge methods set to geometric, -35 and-10 weights set to 1.0, and spacing
weight set to 0.1. The top scoring promoters were evaluated for transcriptional direction of
flanking genes and whether they were within or between predicted coding regions.

SDS-PAGE
Corndog particles were concentrated and purified by CsCl density gradient ultracentrifugation.
The visible phage band was dialyzed against two changes of phage buffer (10 mM Tris pH 7.5,
10 mMMgSO4, 20 mMNaCl, 1 mM CaCl2); 500 μl of the dialyzed CsCl band was pelleted by
centrifugation for 30min at 14000 rpm. The pellet was resuspended in 75 μl of 20 mMDTT,
then 2 μl of 0.5 M EDTA and 1 μl of 1 MMgSO4 was added. The phage was disrupted by heat-
ing to 75°C for 2 mins, and then sonicated on ice six times for 30 seconds to disrupt the DNA.
The sample was mixed with 25 μl 4 x SDS sample buffer and heated in a boiling bath for 3 min-
utes at 95°C. The sample was electrophoresed through a 12% polyacrylamide gel containing
SDS, and stained with Coomassie Brilliant Blue in methanol.

Transcript analysis
A log phaseM. smegmatismc2155 culture was infected with Corndog particles at a multiplicity
of infection (moi) of 3, and total RNA collected at various time points post-infection (30 min,
2.5 h, 3.5 h, and 4.5 h) using the Qiagen RNeasy Mini Kit (Qiagen). RNA was treated with
DNase I (Invitrogen) and cDNA was generated using random hexamers and Maxima reverse
transcriptase (Fermentas). PCR was used with the following primers to check the size of the
cDNA product: (50 GAAGGTGCCTTCAAGACGGCCG 3’) and (50 GCGACCACATCGCT-
GATGCTCTG 30). A Corndog phage lysate was used as a positive control for PCR.

Mass-spectrometry
LC-MS/MS analysis was performed on Corndog particles purified by either one or two rounds
of banding by CsCl equilibrium density centrifugation. For LC-MS/MS analysis of infected
cells, 5 mls of exponentially growingM. smegmatismc2155 (OD600 = 0.4) in 7H9 /ADC was
concentrated to a 500 μl volume via low-speed centrifugation, and infected with Corndog at a
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multiplicity of infection (moi) of 100. Phage particles were allowed to adsorb for 15 minutes,
then 4.5 mls of fresh 7H9 medium was added, and incubated further with shaking for three
hours at 37°C; the OD600 was monitored throughout to follow cell growth and lysis. At 165
minutes post-adsorption, a 1-millilter aliquot was removed from the culture, the cells were pel-
leted via centrifugation (1 min, 14K rpm in a microfuge), and the supernatant was removed.
The cell pellet was frozen at—80°C, and then shipped overnight on wet-ice to the University of
California, Davis Proteomics Core (UCDPC) http://proteomics.ucdavis.edu. There, the cells
were lysed via a MagnaLyser, the insoluble fraction was removed, and the soluble proteins
were precipitated, digested with Trypsin, and cleaned-up using a macro spin-column. The pep-
tides were then separated using an Easy-LC II High-Pressure Liquid Chromatography HPLC
system and loaded into a Q-exactive orbitrap mass spectrometer with a Proxeon nano-spray
source (Thermo) for tandem ms analysis. Detected spectra and fragmentation profiles were
matched against a database comprised of a six-frame translation of the Corndog genome, the
annotated proteins ofM. smegmatismc2155, and UniProt using X!Tandem. Peptide matches
were analyzed using Scaffold4. Settings used a peptide threshold of 95%, and protein FDR of
1%. For proteomic analysis of Catdawg, a 1 ml aliquot of a phage lysate was pelleted at 14K for
2 hours at 4°C, resuspended in 100 μl of 0.1 M phosphate buffer and shipped overnight on dry
ice to MSBioworks (http://www.msbioworks.com/) for mass spectrometry analysis of
phage proteins.

For N-terminal analysis of proteins, a Catdawg lysate were labeled with 200 mM TMPP in
20% acetonitrile [45]. Approximately 20 μg of labeled proteins were resolved and separated on
a 4–12% Bis Tris SDS-PAGE gel in MOPS buffer and the gel lanes excised into 20 equally sized
segments. Gel segments were protease digested using either trypsin or chymotrypsin and ana-
lyzed by nano LC-MS/MS with a Waters NanoAcquity HPLC system interfaced to a Thermo-
Fisher Orbitrap Velos Pro. Peptides were loaded on a trapping column and eluted over a 75 μm
analytical column at 350 nL/min. The mass spectrometer was operated in data-dependent
mode, with MS performed in the Orbitrap at 60,000 FWHM resolution and MS/MS performed
in the LTQ. The 15 most abundant ions were analyzed. Mascot DAT files were parsed into
Scaffold for validation and filtered to create a non-redundant list. Filtering used a minimum
protein value of 99% and peptide value of 50% (Prophet scores), and required at least two
unique peptides per protein. Protease peptide data were merged for analysis. Peptide data from
the two different proteases were merged using Scaffold4 for subsequent data analysis Settings
used a peptide threshold of 95%, and protein FDR of 1%.

Supporting Information
S1 Fig. Comparison of Cluster O genome maps. Genome maps of the five Cluster O phages,
Corndog, Catdawg, Dylan, Firecracker and YungJamal were generated by Phamerator using
the database mycobacteriophage_292 (41). Genes are shown as boxes above (rightwards-tran-
scribed) or below (leftwards-transcribed) the genome with gene names within the boxes.
Phamily assignments for genes are shown above the boxes with the number of phamily mem-
bers in parentheses. Shading between genomes shows pairwise nucleotide sequence similarity
and spectrum colored with violet being the most similar, and red being the least similar but
above the threshold BLASTN E value of 10-5.
(PDF)
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