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PREFACE 

 

 In the year 2007, a slightly nerdy girl fell in love with all things math.  Even though she only was 

exposed to a small part of the immense field of mathematics, she knew that math would always have a 

place in her heart.  Ten years later, that passion for math is still burning inside.  She never thought she 

would be interested in anything other than strictly mathematics.  However, she discovered a love for 

computer science her sophomore year of college.  Now, she is graduating college with a double major in 

both mathematics and computer science. 

 This nerdy girl is me.  It was my first semester, freshman year at Ouachita Baptist University 

when I discovered an interest in cryptography.  Discrete Mathematics had a small portion of the class 

that discussed various types of cryptosystems.  These were the simplified versions that were easier to 

comprehend so that we could truly grasp the underlying concepts of cryptography.  However, I craved 

more.  I wanted to delve further into the advanced world of cryptography.  It was not until my Honors 

Directed Study that I was able to do so. 

 During my directed study, I was able to research the history of cryptography and what it has 

transformed into today.  While it was fascinating to look at all the various cryptosystems that have been 

created throughout time, one cryptosystem caught my eye in particular—Elliptic Curve Cryptography, 

commonly referred to as ECC.  I had heard of a few cryptosystems but never the ECC.  As such, my 

interest was piqued.  Having the opportunity to research Elliptic Curve Cryptography, I was ready to try 

and understand a new mathematical concept.  I was ready to further expand my love and passion for 

mathematics, and I was not disappointed.  Learning even the basics of elliptical curves proved 

challenging.  The math behind ECC is immense and quite frankly, intimidating.  Nevertheless, I do not 

back down from a challenge…at least not a mathematical one.   
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 My research of elliptic curves, the basis of Elliptic Curve Cryptography, opened up my eyes to an 

entirely new field of mathematics.  The challenges that arose during my studies, while frustrating at 

times, are well worth the wealth of knowledge I was able to acquire.  The research in my study of 

elliptical curve cryptography only increased the ten-year passion for mathematics that is still inside the 

slightly nerdy girl. 

 This paper is the culmination of all my research over elliptic curves.  It reflects the knowledge 

that I was able to acquire while studying elliptic curve cryptography and quantum computers. 
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THE HISTORY 

 

 Cryptography has grown immensely since the beginning of time.  Each society throughout 

history has shown incredible skill and thought to keep its secrets safe: from the early scytale, to the 

Atbash cipher, to the Caesar cipher, to the modern cryptosystems of today such as the Rivest-Shamir-

Adleman encryption and Elliptic Curve Cryptography.  Each of these has been a way for a society to 

protect information deemed important.  There has always been a chase between the code makers and 

the code breakers.  Each new achievement in technology allows the cryptanalysts, the code breakers, to 

find a way to break the current cryptosystem.  Nevertheless, those same advancements in technology 

also allow for the cryptographers, the code makers, to create a new and more secure cryptosystem. 

 Because each technological advance brings the threat of breaking the current cryptosystem, 

cryptographers constantly try to create a new cryptosystem that is better than the previous.  The 

standard of a cryptosystem was held by the Rivest-Shamir-Adleman encryption method, commonly 

referred to as RSA encryption.  RSA encryption is in fact still widely used in today’s society.  Elliptic Curve 

Cryptography (ECC) developed as an alternative to RSA encryption.  The idea of using elliptic curves for a 

new type of cryptosystem first appeared in 1985, when Neal Koblitz and Victor Miller proposed the idea 

("Elliptic curve cryptography").  Most intriguing though, is that Koblitz and Miller proposed their idea 

independently, without knowledge of the other proposing the exact same idea.  After the initial 

proposition of using elliptic curves as a cryptosystem in 1985, ECC did not gain popularity until the late 

1990’s.  At this point, a majority of companies standardized on ECC, so it started to receive commercial 

acceptance.  Today, ECC is mainly used in resource constrained environments such as ad-hoc wireless 

networks and mobile networks since a large key size is not required. 
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 The Elliptic Curve Cryptosystem was designed and created as a high-level security public key 

cryptography system.  A public key cryptography system includes a pair of mathematically related keys: 

one public that is distributed widely and one private that only the owner knows (GlobalSign).  To encrypt 

a message, the public key is used.  To decrypt a message, the private key is used.  Thus, the 

public/private key pair has been found to be a safe and effective way to keep data secure since the 

private key is only known to the owner.  Conventional public key cryptosystems typically result in lower 

speeds and an increase in the consumption of bandwidth because of the large size of the key to 

maintain the required level of security.  Elliptic curves decrease the key size needed to maintain a similar 

level of security. 

Cryptosystems, such as RSA encryption, depend on very large prime numbers.  These large 

numbers require more bits to store as a key.  ECC does not require such large numbers to create a 

secure key.  To understand how an Elliptic Curve Cryptosystem achieves a high level of security with a 

compact size, a basic understanding of elliptic curves is needed. 
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A BASIS OF ELLIPTIC CURVES 

 

An elliptic curve is simply a type of cubic curve which has an order of three.  Another way to 

state this is that at least one of the variables in the equation is raised to the third power.  However, an 

elliptic curve is not a function.  For a function, each input has a single output, but an output may have 

more than one input.  However, an elliptic curve may have two outputs for every one input thus making 

it not a function.  We can see this in Figure 1.  

 

 

An elliptic curve is a nonsingular cubic curve in two variables over either an infinite or finite 

field.  Typically, we concentrate on elliptic curves over a finite field that is algebraically closed, meaning 

every non-constant polynomial has a root.  As such, a nonsingular cubic curve has nine points of 

inflection, although only three of these may be real.  A point of inflection is a point on a curve in which 

the second derivative of an equation switches from positive to negative or vice versa (WolframAlpha).  It 

Figure 1.  A sample of an elliptic curve 
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is where the curve changes from concave up to concave down or from concave down to concave up.  An 

elliptic curve uses the Weiertstrass equation: 

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎5 

such that 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 ∈  ℝ  and Δ ≠ 0, in which Δ is the discriminant of Equation 1.  Equation 1 

can be simplified to: 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 

in which 𝑎1, 𝑎2, 𝑎3 = 0 and 𝑎4 = 𝑎 and 𝑎5 = 𝑏 

Or 

𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 

in which 𝑎1, 𝑎2 = 1 and 𝑎3, 𝑎4 = 0 and 𝑎5 = 𝑏.  The solutions 

of Equations (1), (2), and (3) are confined to a region of space 

that is topologically equivalent to that of a torus, which 

resembles something along the lines of a doughnut as we can 

see in Figure 2. 

Several properties of elliptic curves allow them to 

form an Abelian group under addition.  An Abelian group 𝐺: 

1) Has closure – for all 𝑎, 𝑏 in 𝐺, 𝑎 ∗ 𝑏 is also in 𝐺 

2) Has associativity – for all 𝑎, 𝑏, and 𝑐 in 𝐺, the equation (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) holds true 

3) Has an identity – there exists an element 𝑒 in 𝐺 such that for all elements 𝑎 in 𝐺, the 

equation  𝑒 ∗ 𝑎 = 𝑎 ∗ 𝑒 holds true 

4) Has an inverse – For each 𝑎 in 𝐺, there exists an element 𝑎−1 in 𝐺 such that 

 𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 𝑒 

(1) 

(2) 

(3) 

Figure 2.  A common 3 dimensional 

torus 
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5) Has commutativity – for all 𝑎, 𝑏 in 𝐺, the equation 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 holds true 

It is because of these properties that addition and point doubling on elliptic curves are not too difficult.  

To add two points, 𝑃 and 𝑄, on an elliptic curve, a line from 𝑃 to 𝑄 intersects a point (−𝑅) on the 

elliptic curve. Then, the reflection of (−𝑅) about the x – axis is taken to find 𝑅, which is 𝑅 = 𝑃 + 𝑄 (Md. 

Al-Amin Khandaker Nipu).  Formally, we say: 

Let 𝑃 = (𝑥𝑃 , 𝑦𝑃) and 𝑄 = (𝑥𝑄 , 𝑦𝑄) be elements of 𝐸 (an elliptic curve) with 𝑃 ≠ 𝑄.  

Then,       𝑅 = 𝑃 + 𝑄 = (𝑥𝑅 , 𝑦𝑅) such that: 

𝑥𝑅 = 𝜆2 − 𝑥𝑃 − 𝑥𝑄 

𝑦𝑅 = 𝜆(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃 

Where 𝜆 =
𝑦𝑄−𝑦𝑃

𝑥𝑄−𝑥𝑃
 

Graphically, we see point addition in Figure 3 on the elliptic curve 𝑦2 = 𝑥3 − 3𝑥 + 5 as: 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

Figure 3.  (a) Two points on an elliptic curve.  (b) Line from point P through point Q to intersect   

at point –R.  (c) R = P + Q is found by taking the reflection of –R over the x – axis. 

(4) 

 
(5) 

 

(c) 
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To perform point doubling on an elliptic curve, we take the tangent line of the point we are 

doubling, 𝑃, and find where it intersects the elliptic curve, (−𝑄).  Then, we take the reflection about the 

x – axis of this point to find our doubled point, 𝑄 (Md. Al-Amin Khandaker Nipu).  Formally, we say:  

Let 𝑃 = (𝑥𝑃 , 𝑦𝑃) be an element of 𝐸 with 𝑃 ≠ −𝑃.  Then 𝑅 = 2𝑃 =  (𝑥𝑅 , 𝑦𝑅) such that 

𝑥𝑅 = 𝜆2 − 2𝑥𝑃 

𝑦𝑅 = 𝜆(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃 

Where 𝜆 =
3𝑥𝑃

2 +𝑎

2𝑦𝑃
 

Graphically, we see point doubling in Figure 4 on the elliptic curve 𝑦2 = 𝑥3 − 3𝑥 + 5 as: 

The examples of point addition and point doubling above are of elliptic curves over the real 

numbers.  While elliptic curves over the real numbers are easy to demonstrate and easy to look at 

graphically, they are not the best option.  Elliptic curves over the real numbers have slower calculations 

and there are inaccuracies due to rounding errors.  There is also the fact that the real numbers are an 

infinite field.  Elliptic curves over a prime field or over a binary field are much more effective in 

calculations.  A prime field is a finite field in which every element is a prime number.  A binary field is a 

Figure 4.  (a) Point P on an elliptic curve.  (b)  Tangent line at P to find –Q.  (c)  Q = 2P is 

found by taking the reflection of –Q across the x – axis  

(6) 

(7) 

(a) 

 

(a) 

 

(b) 

 

(c) 
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finite field in which every element is a binary number.  An 8-bit binary number is eight digits comprised 

of either a 1 or a 0.  For example, the number 6 in binary is represented as 00000110.  It is much more 

difficult to interpret the graphs of prime and binary fields than a graph of the real numbers.  Elliptic 

curves over a prime field are formally defined as: 

𝑦2 mod 𝑝 =  (𝑥3 + 𝑎𝑥 + 𝑏) mod 𝑝 

Where (4𝑎3 + 27𝑏2) mod 𝑝 ≠ 0 and 𝑥, 𝑦, 𝑎, 𝑏 ∈ [0, 𝑝 − 1] (McGivern).  When using point addition or 

point doubling on an elliptic curve over a prime field, modular arithmetic of addition, subtraction, 

multiplication, and inversion must be performed.  The graph of an elliptic curve over a prime field is 

shown in Figure 5. 

Elliptic curves over a binary field are defined as: 

(8) 

Figure 5.  The graph of an elliptic curve over a primary field. 
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𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 

where 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝔽2𝑚  such that 𝑚 ∈ ℤ+ (Bluhm).  Thus, we assume that the finite binary field has an 

irreducible polynomial and a single element is a generator for the entire field.  The field is generated by 

taking the powers of that single element.  The graph of an elliptic curve over a binary field is as follows. 

 Normal point representation on an elliptic curve is an affine coordinate (𝑥, 𝑦).  With this normal 

pair coordinate, point doubling and point addition are at a disadvantage.  Inverse operations are 

involved with both point doubling and point addition which can get very expensive in terms of 

computation time.  Instead, the normal Cartesian points can be represented as a triplet (𝑋, 𝑌, 𝑍).  These 

triplets are called projective coordinates.  The relationship between the Cartesian points (𝑥, 𝑦) and the 

triplets (𝑋, 𝑌, 𝑍) is: 

(𝑋, 𝑌, 𝑍) = (𝜆𝑐𝑥,  𝜆𝑑𝑦 , 𝜆) 

(9) 

Figure 6.  The graph of an elliptic curve over a primary field. 

(10) (10) 
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Where 𝜆 ≠ 0 and 

(𝑥, 𝑦) = (
𝑋

𝑍𝑐
,

𝑌

𝑍𝑑
)  

The use of projective coordinates instead of Cartesian coordinates can avoid the use of inverse 

operations and because inverse operations are so time costly, projective coordinates save time.  The 

minor drawback is that projective coordinates do require more multiplications in the field operation. 

Elliptic curves over prime fields differ from elliptic curves over binary fields as each is better 

suited for different applications.  An elliptic curve over a prime field is best for software applications.  As 

such, the prime field does not require the extended “bit-fiddling” operations required by those elliptic 

curves over a binary field.  However, an elliptic curve over a binary field is better suited for hardware 

applications.  The binary field can allow us the opportunity to take less logic gates to create a 

cryptosystem compared to those elliptic curves over a prime field.  Whether elliptic curves are over a 

prime field or a binary field, they can be used to construct a secure public key cryptography system.  A 

private 𝑑 is randomly selected from [1, 𝑛 − 1] such that 𝑛 ∈ ℤ+.  The public key 𝑄 is computed by 𝑑 ∗ 𝑃 

in which 𝑃 and 𝑄 are points on the elliptic curve.  This is denoted as a scalar multiplication and can also 

be used for the signature, encryption, and key agreement in an ECC system. 

  

(11) 
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ELLIPTIC CURVE CRYPTOSYSTEM 

 

 An elliptic curve cryptosystem is a type of public key cryptosystem.  Every public key 

cryptosystem is constructed on the basis of the complexity of one or more difficult mathematics 

problems.  The Rivest-Shamir-Adleman encryption method uses the math problem of factoring.  Another 

algorithm, the Diffie-Hellman encryption method, uses the math problem of a discrete logarithm.  

Elliptic Curve Cryptography is built on the basis of the elliptic curve discrete logarithm problem (The 

Elliptic Curve Discrete Logarithm Problem).  The problem is: 

Suppose 𝐸 is an elliptic curve over 
ℤ

𝑝ℤ
 and 𝑃 ∈ 𝐸(ℤ/𝑝ℤ).  Given multiple 

𝑄 of 𝑃, the elliptic curve discrete logarithm problem is to find 𝑛 ∈ ℤ 

such that 𝑛𝑃 = 𝑄. 

It is because of the difficulty of this problem that ECC has a smaller key size than that of the RSA 

encryption method.  The elliptic curve discrete logarithm problem does not require the sub-exponential 

time algorithm it takes to solve the math problems for both RSA and Diffie-Hellman.  Because it only 

takes a sub-exponential time to solve the problems for RSA and DH, the key sizes must be larger.  We 

see that for the same n length, the sub-exponential running time is less than the exponential running 

time. 
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Thus, to have the same level of security as an exponential running time algorithm, a sub-

exponential running time algorithm must have a larger key size—or length n.  Because of the smaller 

key, the elliptic curve cryptosystem does not nearly take up the same amount of space as the RSA 

encryption method for the same level of security.  Table 1 compares the number of bits needed for RSA 

and Diffie-Hellman versus that of ECC to maintain the required level of security in differing sizes of 

symmetric algorithms. 

  

Figure 7.  Graph that shows how different algorithms’ 

(exponential, sub-exponential, and polynomial) running times 

increase as the length n increases 
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Symmetric Algorithm (bit) RSA and DH (bit) ECC (bit) 

56 512 112 

80 1024 160 

112 2048 224 

128 3072 256 

192 7680 384 

256 15360 521 

To keep the same level of security, RSA and DH encryption require much larger key sizes than 

the ECC.  In today’s society, 15,360 bits is computationally infeasible in embedded systems.  Thus, the 

Elliptic Curve Cryptosystem, at 521 bits, might be the future.  It should be noted that an embedded 

system is different from the general purpose computer.  A general purpose computer is designed to 

manage a wide range of processing tasks while an embedded system is designed to perform only a 

certain task (Techopedia).  As such, design engineers of embedded systems can optimize cost, power 

consumption and size.  Examples of embedded systems include MP3 players, digital watches, switches, 

giant routers, among many others. 

Elliptic Curve Cryptosystems also have a digital signature.  This works in a manner similar to the 

keys.  Again, because of the way ECC works, the size needed to create a digital signature is much less 

than that of RSA or Diffie-Hellman.  Typically, to create a digital signature for a piece of data, a 

cryptographic hash of the data is created with a mathematical operation with the private key.   This is 

Table 1.  Shows for differing values of a symmetric algorithm the amount of bits that is needed to 

maintain a high level of security for both RSA and ECC. 
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the hash value or a checksum value (Sullivan).  If the data has been modified, the value will be different.  

Because of this, the integrity of the data can be evaluated (Techopedia). 

Some benefits to using ECC over RSA for a cryptosystem are listed below. 

Elliptic Curve Cryptosystem (ECC) Rivest-Shamir-Adlman (RSA) 

Smaller public and private keys Public keys are six times larger and private keys 

are 12 times larger (at a 128-bit level) 

Public key signature validation is slower than RSA Public key signature validation is generally faster 

than ECC 

Private key operations (examples: signature 

generation, key management) are faster 

Private key operation are ten times slower (at a 

128-bit level) and increase to be fifty or one 

hundred times slower (at a 256-bit level of 

security) 

The algorithm used is an exponential algorithm The algorithm used is a sub-exponential 

algorithm 

Low on CPU consumption Higher on CPU consumption 

Low on memory usage Higher on memory usage 

Elliptic Curve Cryptosystems are becoming more popular because they are faster than their 

counterpart in the field of cryptography.  This does not mean they are safer or even less safe.  They are 

just different in the mathematical problem used to maintain security.  There have been some concerns 

growing about the effectiveness of ECC encryption. 

Table 2.  Compares ECC to RSA, showing the benefits of using ECC.  
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The main problem with the Elliptic Curve Cryptosystem is the effectiveness of the private key.  

Choosing a private key is pivotal in creating a secure system.  This step cannot be overlooked or the 

cryptosystem will be rendered useless.  One case of this happening is in 2010 when Sony used a static 𝑑 

in their private key 𝑄 = 𝑑 ∗ 𝑃.  Because 𝑑 was static instead of random, a group called failOverflow was 

able to recover the private key.  In 2011, another problem with ECC was found but then quickly 

remedied.  Two researchers showed it was possible to retrieve the private key of a server using OpenSSL 

that uses ECC over a binary field by implementing a timing attack ("Elliptic Curve Digital Signature 

Algorithm").  A timing attack in cryptography is when the attacker analyzes the time taken to execute 

cryptographic algorithms in order to compromise the system.  Using this, the attacker may be able to 

backtrack to the input itself.  However, this is not always a feasible approach because executions may 

take average time performance or the worst-case performance time.  The vulnerability the two 

researchers found was fixed with OpenSSL 1.0.0e.  In August 2013, another issue announced itself with 

Elliptic Curve Cryptography.  The Java class SecureRandom had some bugs in its implementations that 

sometimes generated collisions in the 𝑑 value of the private key 𝑄 = 𝑑 ∗ 𝑃.  However, this problem can 

be prevented by the deterministic generation of 𝑑 ("Elliptic Curve Digital Signature Algorithm").  This 

guarantees true randomness of 𝑑. 

For the past 20 years, the National Security Agency (NSA) has been promoting ECC as a more 

secure alternative to RSA; however, in August 2015, the NSA stopped promoting for the deployment of 

Elliptic Curve Cryptography.  This caused speculations that Elliptic Curve Cryptography is not truly 

secure.  Many theorize that the reason the NSA stopped promoting Elliptic Curve Cryptography is 

because it is viewed only as a stopgap solution for the looming threat of quantum computers.  Some 

others still believe the NSA stopped promoting ECC because of some drawback of the encryption 

system.  Nevertheless, quantum computing is a real threat to the cryptographic community. 
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QUANTUM COMPUTING 

 

 Quantum computers are a thing of the future and that future might be more near than we think.  

However, true quantum computing would render all current cryptosystems useless.  The speeds at 

which quantum computers could execute algorithms would make the difficult mathematical problems 

cryptosystems rely on very feasible. 

 A traditional computer uses bits which can be represented as a 1 (on) or a 0 (off).  A quantum 

computer uses qubits—quantum bits.  A quantum system with qubits encodes the 0s and 1s into two 

distinguishable quantum states.  Thus qubits can use superposition and entanglement because qubits 

behave “quantumly” (University of Waterloo).  Superposition is the ability of a quantum system to be in 

multiple states at the same time—such as “up” and “down.”  Thus, a qubit can be both “on” and “off” at 

the exact same time.  Entanglement is an extremely strong correlation between quantum particles.  This 

correlation is so strong that two or more particles can be linked in perfect unison even across 

unimaginable distances. 

 Because of superposition and entanglement, a quantum computer is able to process a large 

number of calculations simultaneously.  The bits of the computer are both “on” and “off,” allowing for 

much faster computations.  This means that quantum computers could factor very large numbers in 

practically no time at all.  This would render RSA encryption pointless.  Not only would quantum 

computers make RSA completely moot, but they would also make every current cryptosystem pointless 

with the amazing computations quantum computers could theoretically accomplish. 

 D-Wave: The Quantum Computing Company was founded in 1999 and is the world’s first 

quantum computing company, as well as being the leader in the development of quantum computing 

software and systems (“D-Wave Systems”).  For years, quantum computers have just been research, 
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theory, and proposals.  D-Wave is one of the companies that are making quantum computers a reality.  

No longer is quantum computing just theory; D-Wave is implementing quantum computing in the 2000 

qubit D-Wave 2000Q quantum computer.  It is the most advanced quantum computer in existence and 

is based on a novel type of superconducting processor that uses quantum mechanics to accelerate 

computations (D-Wave Systems Inc.).  With quantum computing, D-Wave quantum computers have a 

large advantage over conventional computers.  In fact last year, a team of NASA and Google scientists 

found that a D-Wave quantum computer was 100 million times faster than a conventional computer 

(Beall).  Even the computing giants Microsoft and Google are working on forms of quantum computing 

(Nature Journal).  It is a feasible possibility that quantum computers could be something of the norm in 

the coming years. 

 If this is the case, we must consider what it will take to design a cryptosystem against quantum 

computers.  It might be that we must have quantum computing to design a quantum-state encryption 

method.  Then, the race will be on between the hackers and the cryptographers.  Will the 

cryptographers be able to create a cryptosystem that withstands quantum computing before the 

hackers crack all current encryption methods?  This is the question that we must keep in mind in the 

coming years. 
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CONCLUSION 

 

 I am thankful for the opportunity to research elliptic curve cryptography and quantum 

computers.  I was able to experience a field of mathematics I had not previously been exposed to in a 

classroom setting.  Writing this paper expanded my knowledge and introduced me to mathematical 

proofs written at an extremely high caliber. 

 However, being exposed to such high level proofs forced me to examine them at a slow pace to 

make sure that I thoroughly understand not only the math but also the concepts behind the math.  

There were several times when going through a proof that I would have to search other theorems or 

lemmas to help me better understand the original proof.  This cost me quite a bit of time and slowed 

down my progress in understanding elliptic curve cryptography.  I found that elliptic curves are a 

fascinating subject area with many interesting characteristics that allow them to be used for 

cryptography.  Originally I did not know that when used in cryptography, elliptic curves are used in 

either a prime field or a binary field.  This severely affects how the point doubling and point addition 

works with elliptic curves and makes the mathematics much more complicated. 

 When researching quantum computing, I was fascinated how much progress had been made.  A 

few years ago, quantum computers were just theory and “what ifs.”  Now, prototypes are being created 

and quantum computers are a real possibility.  They are no longer just an idea and concept.  While this is 

exciting, it is also very frightening.  Quantum computers could render all cryptosystems useless.  We 

now have to create a new kind of cryptography that would be able to withstand the computational 

power of a quantum computer. 

 I loved having the opportunity to research both elliptic curve cryptography and quantum 

computers to further my knowledge on those subjects.  
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