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CONVENTIONS IN THIS TEXT 
 
 

- All written text will be in Times New Roman, 12pt font – font size varies with headings 

This sentence is an example. 

- Any code snippet will be in Courier New, 12pt font with syntax highlighting (barring a 

color printer) 

    public void Start() 
         { 
            ArrayList gamePieces = GenerateList(); 

    } 

- Comments on parts of code will be used to explain key components. 

// A comment will follow the characters ‘//’ 

// all characters on the line after ‘//’  

// are ignored during compilation 

- Code supplied in the Appendix will have file names corresponding to the environment it 

was typed in. A .pde file extension corresponds to Processing while a .cs file 

extension corresponds to a C# script from Unity. 

- There is also a bit of pseudo-code, which is a simplified version of code. As the name 

suggests, it is fake code; it will not compile. It is a basic sample of what might be very 

complex code, or code written in a language that differs from the two mentioned in 

Materials Used. The pseudo-code is labeled appropriately and should not be considered 

runnable code. 
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MATERIALS USED 
 

- All code is written for use with Unity3D (Personal Edition) or Processing. 

- All code is written with Visual Studio (Community Edition 2015), Processing, or Unity’s 

built-in MonoDevelop. 

- Languages of choice are C# and Processing (comparable syntax, see Conventions Used). 

- All code is compiled and run on either a custom-built desktop PC or a MacBook Pro. 

- Game Design Documents are documents that outline development for a game. They are a 

guideline for the developer as the developer begins implementing the game. Part of this 

analysis is to provide practical applications for each algorithm. Therefore, at the end of 

each section will be posted a Game Design Document. This document will not define or 

outline an entire game, but will give short description of its expected behavior. 
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PREFACE 
  

I happened upon Computer Science by chance; never in a million years could I have 

foreseen my desire to pursue computing. However, once I wandered into Programming 1, I knew 

that I had discovered what I was meant to do. I have always liked puzzles – not the type that one 

breaks out and puts together with family at the dinner table. No, I instead prefer brain benders 

that required deep thought and strategy to complete. This love of challenge combined with the 

newfound respect for Computer Science led me to this thesis topic: procedural generation. 

	 Procedural generation is a necessity that most game developers use at one point or 

another. Whether it be generating random worlds, levels, terrains, dungeons, obstacles, 

meaningful dialogue, game boards, or data in general, any game developer of esteem should 

have procedural generation in his or her toolkit. My approach to this thesis is to conduct an in-

depth analysis of a few procedural generation techniques and analyze the code of each. I also 

propose a practical application (game) centered around each algorithm of subject. My goal is to 

target some of the most popular approaches to problems and examine each in depth.  Every video 

game is ideally unique; thus, there is no perfect way to explain and describe every type, example, 

and use-case for every procedural generation algorithm in existence.  

	 It is necessary to add a disclaimer to say that every bit of code in this document was 

written by me. As part of the analysis, I must examine through writing; I steer far from copy and 

paste. This does not mean that I originally designed each bit of code. I have not produced an 

expansive library of my own games that involve procedural generation and therefore cannot 

produce original code for each one. I do not have the mental capacity to come up with an idea for 

a game to provide a specific use-case for every possible procedural generation algorithm. Credit 
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will be given where credit is due, but the point of this disclaimer is the contracted agreement 

between the reader and me that each code snippet was written by me, whether pulled from my 

own mind or another’s. 
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INTRODUCTION 
 

  Procedural generation is a method for generating mass quantities of data algorithmically 

rather than manually. One perfect example of this is the recently famous No Man’s Sky, a video 

game where the entire marketing scheme was structured around its procedurally generated 

universe. The game’s trailer and advertisements promised its players 

18,446,744,073,709,551,616 unique planets1, all of which were procedurally generated. In other 

words, the developers did not create exclusive profiles for every single planet, but instead 

programmed the game in such a way that the planets were built from the code. This method of 

content creation is the essence of procedural generation. 

 Procedural generation has a broader application; it is a solution to many problems. It can 

take many different forms, and there are many different algorithms that have been written to 

accomplish many scenarios. The purpose of this analysis was to choose four common and 

interesting procedural generation algorithm archetypes, analyze each of them in the same way, 

and then demonstrate a practical application for each of them. Procedural generation techniques 

are some of the more convoluted programming techniques in existence; therefore, extra emphasis 

is placed on writing, demonstrating, and applying each algorithm. 

 Each algorithm’s runtime complexity was also studied. The complexity of an algorithm is 

denoted as a function of input (Big-O): 𝑂(𝑛). The input, 𝑛, varies between algorithms but 

represents the size of the data necessary for the algorithm. Thus, define 𝑛 each time the 

complexity is mentioned. Algorithmic runtime complexities typically vary mathematically from 

                                                
1 "How 4 Designers Built A Game With 18.4 Quintillion Unique Planets." Accessed April 16, 2017 
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𝑂(1) to 𝑂(𝑛!). Figure 0.1 is a guide to further explain this concept. As input size (the number of 

elements) increases, so too does the amount of operations, and thus the more time and 

computationally expensive an algorithm becomes. Due to this fact, it is extremely important to 

note the complexity of each algorithm because game development relies heavily on user 

experience. If the algorithm is not efficient enough to smoothly generate game content for the 

user, then the developer must find another design.  

 One other item to note is the category of each algorithm. There are several categories of 

procedural generation, but the algorithms of this study fall into one of two types: ontogenetic or 

teleological procedural generation. The difference between the two is in the approach to a given 

problem. Ontogenetic algorithms are ad hoc algorithms; they try to replicate an environment 

through any means necessary. Teleological algorithms attempt to recreate an environment by 

Figure 0.1 – Big-O runtime complexity chart.  

	
Picture from http://bigocheatsheet.com/  
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reproducing its nature. For example, suppose a game that required a procedurally generated 

three-dimensional terrain. An ontogenetic algorithm would try to replicate a real world 

environment by randomly creating mountains and placing objects like trees or rocks at random. 

A teleological approach would model the movement of the Earth’s crust to replicate tectonic 

plate movements and build mountains. Once mountains formed, the teleological approach would 

simulate rain to erode the mountains into a proper form.2 In practice, ontogenetic algorithms are 

faster to write and usually faster in terms of complexity. Ontogenetic algorithms are more 

common in game design because of this fact. However, the teleological approach would generate 

a much more realistic landscape. Each algorithm in this study is categorized in this way to 

further examine their behavior and purpose. 

 These four algorithms mean something to me as a game developer. Each one of them 

could easily be used as a cornerstone for a game that I have prospected. Therefore, I have 

proposed a basic Game Design Document for each of the algorithms. The Game Design 

Documents follow a very trimmed version of the industry standard for this type of document; 

however, they provide a practical way to demonstrate how each game could (and is planned to) 

be made. It is my hope that the reader enjoy their laughableness as much as I do. 

  

 

 

 

 

 

                                                
2 Procedural Content Generation Wiki." Accessed April 16, 2017 
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ANALYSIS 
	
	 I chose to analyze four of many algorithms for procedural generation, and the same 

analysis was applied to each algorithm. The algorithms were chosen based on interest, 

applicability, and variety. These algorithms are some of the most common forms of procedural 

generation used today. For each algorithm, I first give an overview of where the algorithm 

originated, then briefly explain what it is and does, and give a demonstration referencing snippets 

of code. I also venture into more detail about each algorithm’s complexity and a little of the math 

behind it. This detailed examination further explains how the algorithm works. Every analysis 

then ends with a section on the algorithm’s applicability with a Game Design Document. These 

documents were created based on code that I wrote either in Unity or in Processing. They outline 

how each algorithm can be applied to a simple game idea that I have had throughout my 

experience as an amateur game developer. I cannot possibly create a full-fledged version of each 

game within a reasonable amount of time. Therefore, these Game Design Documents simply 

give a general overview of each game, its key features, and expound on how each procedural 

generation technique makes the game unique. 
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CHUNK-BASED 
  
 Chunk-based procedural generation exemplifies the definition of ontogenetic procedural 

generation. These algorithms are on-the-fly, ad hoc programs that are commonly used for 

infinitely generated games such as infinite runners, of which there are a plethora of late.  These 

algorithms are considerably easier to conceptualize than most procedural generation algorithms. 

Most other procedural generation methods have papers and articles written about them once they 

are contrived; however, chunk-based procedural generation algorithms are so varied that they 

would be impossible to categorize in this way. 

 Many recently popular games rely heavily on chunk-based, generated content. A few of 

these include but are not limited to: Crossy Road, Flappy Bird, Cube Runner, Chicken Scream, 

Temple Run (all of them), Super Mario Run, and Super Mega Neo Pug. This field of algorithms 

is one of the simplest forms of procedural generation in existence. Chunk-based generated 

content can be defined as content generated in chunks. These algorithms usually follow the same 

Figure 1.1 – A chunk-based algorithm game. The player (the square) must traverse between the obstacles 
(the red bars). These red bars travel from the far right of the screen to off the left side of the screen as time goes on. 
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three-step process for content creation. Firstly, they generate a pool of objects, obstacles, course 

sections, or whatever content the game requires. Secondly, these algorithms select an object 

randomly from this pool and slide it toward the player. Lastly, once an object has fallen off the 

screen, it is returned to the pool of objects to randomly select from again. Though there may be 

slight changes to the content in the pool as the game moves on such as making the content more 

difficult or spawn faster, but the foundation of the algorithm is this three-step process. 

 Figure 1.1 depicts a basic game implementing a chunk-based procedural generation 

algorithm. The red obstacles depicted in Figure 1.1 are generated with gaps at random heights 

and then placed into a list. Items are then randomly selected from the list, and the selected chunk 

begins traveling toward the player whose latitudinal position does not change. As a chunk travels 

off the left side of the screen, the chunk is toggled to reposition itself back to just off the right 

edge of the screen. Chunks are continually and randomly selected from the pool based on a time 

interval, which creates the gap amongst obstacles.  

 Again, it is important to note that these algorithms vary in terms of breadth; however, 

their variance in depth is not as complicated. They follow the same approach to problems, and 

these algorithms have a typical runtime complexity of 𝑂(𝑛) at game start, an efficient runtime 

complexity, where 𝑛 is the size of the chunk pool. Once the game has started, the complexity 

trims to 𝑂 𝑘 , each frame, where 𝑘 is the number of chunks on the screen and 𝑘 ≤ 𝑛. Every 

frame, offset by the gap between chunks, the pool is sifted through to find the next chunk to 

render. Next, each chunk currently on the screen must be examined to check that it has not 

traveled beyond the scope of the play space. This runtime complexity is very quick, and the 

algorithm is also memory-efficient with the recycling nature of the elements on screen.  
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 The code used to generate Figure 1.1 is in the Appendix. There are three key elements: 

the driver, the player, and the chunk. The player is simply the cube rendered on the screen. The 

chunk consists of two vertical bars, as shown in Figure 1.1. The sizes of the vertical bars are 

randomly generated based on a random number generator while ensuring there is space enough 

for the player to fit between the gap in the two bars. The driver creates a pool of these chunks 

and begins drawing them to the screen at random, checking for those going out of view to be 

returned to the pool. 
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HoverCube 
Game Design Document 
 
Description of Game: 
 
 HoverCube is another infinite runner-type game. It can easily be viewed as a cross 

between Crossy Road, the infamous Flappy Bird, and the new Chicken Scream. The physics and 

style mimic that of Flappy Bird; objects approach the player as the player tries to navigate them. 

Score is based on the player’s ability to dodge the obstacles. The player moves based on the 

scream mechanic from Chicken Scream: the louder the player screams, the more vigorous the 

jump. The crossover from Crossy Road is the artwork and character selection. As the player 

accumulates points, more characters are unlocked or bought. The player can also gain currency 

through watching advertisements. Once the player selects a different character, the entire artwork 

is reskinned to match the theme of the character. The goal is not to reinvent the wheel with this 

game; well-done infinite runners are the favorites of today. 

Key Features: 

• The menu screen is generic with emphasis on the cube. 

• The menu includes a character selection screen where the player may select from 

any number of characters to play. 

• Each character comes preloaded with a unique theme and skin for the gameplay. 

• The player has unlocked, default characters that are just recolors of the original 

artwork. 

• Every character is cube-based, to further add to the ridiculousness. 

• The obstacles are randomly generated based on a random number generator. 
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• The pool is created from these obstacles and they are randomly rendered based on 

another random number generator. 

• The player falls with gravitational acceleration, each character maintaining their 

own weight. 

• The player must scream into the device microphone to maneuver the player 

upward, scaled to the weight of the character. 

• The score is based on the number of pixels traversed, normalized to 100 pixels per 

point. 

 

Screen Shots of Default Character Reskinned Artwork: 
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PERLIN NOISE 
 
 Perlin noise, created by Ken Perlin in 1983, was created to develop “highly realistic 

Computer Generated Imagery,” as Perlin himself put it in his 1985 article “An Image 

Synthesizer”.3 He was later awarded an Academy Award for Technical Achievement for his 

work in 1997. He never applied for any patents for his algorithm; it was merely born out of his 

frustration for the current method of computer generated imagery. However, later, he was 

granted a patent for some use cases such as simplex noise, which simplifies his original, more 

complicated algorithm.4  

 The Processing Reference defines Perlin noise as “a random sequence generator 

producing a more natural, harmonic succession of numbers than that of [a] standard random 

[number generator].”5 This 

description places the 

Perlin noise algorithm into 

the ontogenetic category 

because rather than model 

a natural process, it 

recreates environments 

based on a random number 

generator, though with smoothing. This smoothing aspect is a practical definition for gradient 

noise, meaning the generated grids have a more gradient color scheme. It is widely used for 

                                                
3 Perlin, Ken. "An image synthesizer." ACM SIGGRAPH Computer Graphics 19, no. 3 (1985): 287-96. 
4 Perlin, Ken. Original Perlin Noise Source Code. Raw data. 
5 Processing Foundation.  "Noise() \ Language (API) \ Processing 2." 
 

Figure 2.1 – Randomly generated noise (Figure 2.1A) on the left, and 
Perlin noise (Figure 2.1B) on the right. 
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computer graphics because of its ability to smooth edges and create more lifelike textures. The 

noise has a pseudo-random appearance, even though all its cells are the same size. Thus, the 

algorithm is scalable and controllable to two, three, four, or any number of dimensions. It can 

also be copied and used upon itself to create even more variety.  

 Figure 2.1 is a demonstration for comparison. Perlin noise generates smooth textures via 

the following three steps: divide a canvas into a grid, assign values to each node in the grid, and 

then smooth across each node. Figure 2.1A is an example of randomly generated noise, created 

by means of a random number generator; this figure shows no smoothing whatsoever. Figure 

2.1B shows a grid with the Perlin algorithm applied. Both grids represent a 50x50 grid of values 

between 0 and 255 calculated using Processing’s API. These values are then used as to create a 

grayscale fill, 0 for black and 255 for white. The grayscale fill was applied to each node before it 

was drawn. The grid with the applied Perlin algorithm calculated a noise value per node based on 

a scale, again relating back to the Perlin algorithm’s ability to be scalable. 

 This noise scale value determines the amount of smoothness between associated nodes. 

Figure 2.2 demonstrates this concept with three different grids calculated with distinct noise 

scale values. These noise scale values are typically low, decimal values; the Processing 

Figure 2.2 – Three grids with the Perlin noise algorithm applied, each with their own noise scale value 
to demonstrate smoothness. In order from left to right, the noise scale values are 1, 0.1, and 0.01. 
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Reference defaults this value to 0.2 

in its demonstration. Figure 2.1B was 

generated with the default value 

while Figure 2.2 exhibits values 

ranging from 1 to 0.01. 

 The code to generate Figures 2.1 and 

2.2 is remarkably simple. Figures 2.3 

and 2.4 show the Processing code 

snippets which were used to generate 

Figures 2.1 and 2.2. The noise scale value is set to its default value in Figure 2.4. The grids were 

generated using Processing’s built in function for generating the Perlin value.  

 There are a few simplifications of Perlin’s algorithm, most notably the Simplex Noise 

algorithm. Perlin’s original algorithm ran with a complexity of 𝑂(2*), an exponential time 

algorithm, 

where 𝑛 is the 

number of 

dimensions, 

which is 

inefficient in 

practice. For 

each node 

within the 

grid, the 

Figure 2.3 – Processing code to create a random number generator 
based grid. 
void setup() { 
  size(500, 500); 
  int gridSize = 500; 
 
  int sideLength = 10; 
 
  //Random, no Perlin 
  for (int i = 0; i < gridSize; i++) { 
    for (int j = 0; j < gridSize; j++) { 
      int noise = (int)random(0, 256); 
      fill(noise); 
      rect(i * sideLength, j * sideLength,  
  sideLength, sideLength); 
    } 
  } 
} 

Figure 2.4 – Processing code to generate Perlin noise based grid. 
 
void setup() { 
  size(500, 500); 
  int gridSize = 500; 
 
  int sideLength = 10; 
 
  //Perlin Stuff 
  float noiseScale = 0.2; 
  for (int i = 0; i < gridSize; i++) { 
    for (int j = 0; j < gridSize; j++) { 
      float noiseVal = noise(i*noiseScale, j*noiseScale); 
      fill(noiseVal*255); 
      rect(i * sideLength, j * sideLength, sideLength, 
sideLength); 
    } 
  } 
} 
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distance is computed between each corner of the node and the point at which the node resides. 

This distance is then multiplied by the noise value associated with the node. In terms of vectors, 

the dot product between the gradient vector (noise value), and the distance vector is computed. 

Thus, in a two-dimensional system, with each node having four corners, eight distances and dot 

products must be calculated. This computation results in the 𝑂(2*) run-time complexity. 

Simplex noise simplifies this complexity to 𝑂(𝑛+), a more reasonable, polynomial time 

algorithm. The Simplex noise algorithm was also developed by Perlin because he knew the 

limitations of his algorithm. Simplex noise is limited to usage in higher dimensions, however, 

but contains fewer “directional artifacts”, meaning less overhead. It does not perfectly recreate 

the refined results of the original algorithm. Simplex noise is much easier in practice though, and 

it is also easier to implement in hardware.6 

 Perlin maintains his original algorithm and has it posted online on his personal blog.7 The 

original code is written in C, a language residing outside of the scope of this research. Therefore, 

pseudo-code based on the original algorithm is provided in the Appendix. It is quite well 

documented, though the actual code looks extremely convoluted. The pseudo-code only 

represents the algorithm as applied to a two-dimensional system for ease of implementation. 

                                                
6 "Perlin noise." Wikipedia. March 22, 2017. 
7	Perlin, Ken. Ken's Academy Award. Accessed April 25, 2017.	
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Perlin noise is often used for generating maps and textures in video games. Usually, a 

map or game world is a mesh of differing height values at different points across a plane. This 

scenario is exactly how Perlin noise can be used to generate smoother maps then dividing a flat 

plane into a grid and then assign random values to correspond to height values. This approach 

would generate a jagged map with stark transitions. Figure 2.5 shows a procedurally generated 

mesh via Perlin noise in Unity with coloring based on the noise values for each node in the grid. 

Figure 2.6 shows how these noise values can be extrapolated to correspond with height values. In 

Unity, these height values can then be applied to the mesh to create a three-dimensional terrain. 

The colorization is rough due to the nature of the demonstration. If more careful attention were 

paid to the color selection, the mesh could be become even more realistic. 

 

Figure 2.5 – Procedurally generated 2D mesh in Unity with colorization based on noise values. 

  

Figure 2.6 – The two-dimensional mesh from Figure 1.5, but noise values extrapolated to height values.  
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Survive the Night 
Game Design Document 

Description of Game: 
 
 Survive the Night is a nightmare survival game, with a twist. The game begins during the 

day, and the player can rummage around to look for supplies, weapons, ammo, and 

manufacturables. As the sun sets, the music gets more eerie, and it becomes obvious to the player 

that shelter must be either built or found. Once night officially falls, enemies begin to spawn. 

This cycle continues in waves, where each day/night cycle is one wave. As the game advances, 

the player has the ability to build more complex items to help defend through the night. Also, 

more enemies spawn each wave, hounding the player and creating a heightened sense of danger. 

The game cannot be won, it is simply a survival game where highscores are based on how long 

players survive. The catch is that enemies only move while the player is looking away from 

them; in essense, when the camera viewport is facing away. This gives the player the option to 

hunt the enemies down. As the distance between the player and a given enemy minimizes, the 

enemy begins to move faster if it can move. 

Key Features: 
 
 Survive the Night is a game of options: 

• The world is procedurally generated (via Perlin Noise) each time the game loads. 

• The supplies, ammo, or any interactable item are also procedurally placed across the 

game world, as are trees and environmental structures. 

• To reduce the complexity of the procedurally generated content, there will be a small set 

of standard structures generated in every map (e.g. 1 cabin, 1 estate, and a standard 
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weapons loadout); these items will be procedurally placed each game, but it will be the 

same list of items. 

• The player’s initial spawn point is chosen at random, within a safe node of the generated 

Perlin noise grid. 

• The enemies will also procedurally spawn, provided a minimum safe distance from the 

player (which grows smaller as the waves advance). 

• Player health and HUD will be the same each game; essentially the player will start with 

nothing each round and have a given amount of time to prepare for the night. 

First Person View of Perlin Noise Generated World (Daytime): 
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Separation Steering 
 
 Separation Steering, or flocking, is a unique procedural generation algorithm with two 

distinct primary applications. The most common example is the boids demonstration. A boid is a 

bird-oid object created by Craig Reynolds for his artificial life algorithm in 1986. His flocking 

algorithm was a successful attempt to model the movement 

of birds (or other flocking animals or insects) in real life 

without individually programming the movement of each 

bird. In fact, Reynolds’ algorithm is not technically a 

procedural generation algorithm because it does not generate 

anything; however, pieces of his algorithm can be utilized 

for explicit generation, which I describe later. In his paper 

“Flocks, Herds, and Schools: A Distributed Behavioral 

Model”, Reynolds states that the boids mimic the average 

particle system. “The simulated flock is an elaboration of a 

particle system, with the simulated birds being the particles. 

The aggregate motion of the simulated flock is created by a 

distributed behavioral model much like that at work in a 

natural flock; the birds choose their own course.”8 Thus, 

flocking is a teleological algorithm because it simulates the 

nature of birds, allowing them to select their own paths.  

                                                
8  Reynolds, Craig W. "Flocks, Herds and Schools: A Distributed Behavioral Model."  
	

Image from Wikipedia:      
https://en.wikipedia.org/wiki/Boids 

Figure 3.1 – Graphical 
demonstration of the three 
behavioral units of the flocking 
algorithm. 
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 Reynolds’ flocking algorithm involves three key components: separation, alignment, and 

cohesion. To determine how a group of entities will steer, a single entity will look at each entity 

within a neighborhood radius, some predefined radius extending out from the center of the 

entity. Each neighbor within this radius is added to a list of neighbors for a single entity, and this 

process is done for every entity in the considered system. 

  Separation is applied to each boid’s list of neighbors, examining each neighbor. 

The goal is for the boids to be minimally distant from one another but not on top of each other; 

thus, the necessity of the separation step. This examination considers the distance from each 

neighbor to the boid in question. Each neighbor’s directional vector is then normalized and 

divided by the distance from the considered boid. This value is added to a static separation force, 

which is used to literally steer the considered boid.  

  Alignment, after separation, tries to maintain the direction of each boid in 

congruence with its neighbors. The list of neighbors is iterated through again, averaging the 

neighbors’ directional vectors, which returns the desired direction. The current directional vector 

of the considered boid is then subtracted from this desired direction and reapplied to itself. This 

is applied to each boid, iterating through and calculating a desired direction for all boids in the 

system. 

 Lastly, cohesion steers each boid inward toward its neighbors. Again, the list of 

neighbors is iterated over, however, cohesion calculates the average position vector of each 

neighbor, not direction. Cohesion is also applied to each entity; this is an ad hoc center of mass 

calculation, which is used to maintain each entity flocking by its neighbors. Cohesion, with 
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separation and alignment, creates the flocking simulation.9 A larger demonstration of the bird 

flocking algorithm can be found in the Appendix. 

 With little modification, and the addition of a few extra calculations, the flocking 

algorithm can be extrapolated to random dungeon generation, an ontogenetic algorithm. One can 

draw a random group of rectangles (dungeon rooms) to the screen and then apply the same logic 

to the squares from Reynolds’ 

flocking algorithm. Figure 3.2 

demonstrates this fact. The few 

modifications include removing 

the cohesion factor. The separation 

steering component of the flocking 

algorithm is the key; however, the 

cohesive factor becomes moot 

(hence the name: separation 

steering). The goal is to 

procedurally generate dungeon 

rooms that are not overlapping and 

spread apart, exhibiting modified 

cohesion. Thus only a few rooms are kept once they have all been separated. This selection 

process is based on some population percentage density. Figure 3.3 shows the final product with 

crude lines drawn to signify tunnels between the rooms. These room mappings can be used as 

individual dungeons or individual floors within a dungeon. The crux of the algorithm is still 

                                                
9 Buckland, Mat. Programming Game AI by Example. Plano, TX: Wordware Publ., 2009. 113-19.  

Figure 3.2 – An example of how the flocking algorithm 
 can be applied to create random dungeons. First, random rooms are 
created and drawn to the screen, then separated out. This is the exact 
process Reynolds used. 
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Reynolds’ flocking algorithm, just with modification to cohesion. Another key difference is the 

amount of iterations. Reynolds’ boid flocking must update each frame to continue the 

movements of the boids indefinitely, but separation steering must only continue until all rooms 

have been separated.  

 The code written to 

generate Figures 3.2 and 3.3 is 

posted in the Appendix. It is 

Processing code, using 

Processing’s built in rectangle-

drawing function to represent 

rooms. The Room class contains 

the method that computes the 

steering force, the heart of 

Reynolds’ algorithm. This 

separation steering algorithm 

has a runtime complexity of 

𝑂(𝑛+), where 𝑛 is the number of 

rooms initially generated. Each room must find each of its neighbors, and in this demonstration, 

the neighbor radius encompasses all initially spawned rooms. 

 

 

 

 

Figure 3.3 – Procedurally generated dungeon room mapping. This 
map is the final point in the process. The rooms have been separated, some 
randomly selected based on a population percentage value of 15%, and lines 
were crudely drawn between them to signify tunnels. 
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Geometrimon 
Game Design Document 
 
Description of Game: 

 Geometrimon is a classic dungeon crawler. It is loosely modeled after an old game, 

Dragon Warrior Monsters, once a popular Gameboy game in Japan. The game is designed for 

mobile devices, and the game centers around satirical humor and sarcasm. The player is thrown 

into a world filled with mathematicians. Mathematicians have become too powerful and created 

monsters to do their bidding. These monsters now threaten existence due to a miscalculation. 

Also, mathematicians are not artistically inclined, and these monsters consist only of geometric 

shapes with more powerful monsters containing more vertices and dimensions. The monsters 

have grown and evolved to have their own god, the sphere, a shape that has surpassed vertices. 

The mathematicians have sequestered these monsters into their own dimension by bending 

space-time at points across the world with the help of physicists. The player (the consultant) can 

enter this alternate dimension to conquer the monster world. To do this, the player must gather a 

team of monsters by recruiting them along the way. Each of these points of bent space-time leads 

to a dungeon, procedurally generated via separation steering. The player must conquer all 

dungeons and defeat the sphere to win the game. 

Key Features: 

• Every mathematician is modeled after a real-life mathematician. 

• The player is gifted their first monster, who does not obey initially. 

• The monsters have attributes and gain experience. 

• Not all attributes are directly linked to experience (example: tameness). 

• Opposing monsters grow steadily more challenging as the player advances. 
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• Monsters can evolve, meaning they gain another vertex (a point becomes a line, 

etc.). 

• Monsters can be bred, adding the parents’ vertex count together minus some 

offset. 

• Encounters throughout each dungeon are battles between the player and enemy 

monsters that can be recruited – these encounters happen once ever few steps. 

• Each dungeon has a preset number of floors, increasing in number as the game 

progresses. 

• Each dungeon keeps the same artwork, though the rooms are procedurally 

generated. 

• Every ten floors in a dungeon will contain a transition in artwork and a more 

significant increase in difficulty. 

• Player movement and dungeon mapping will be based on a gridded system in 

compliance with the artistic style. 

Dungeon (Complex and Simple) Example Maps: 
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CELLULAR AUTOMATA 
 
 Cellular automata, or cellular automation, is another procedural generation algorithm 

with many uses. It can be both teleological or ontogenetic depending on its usage. The idea, 

originating from Stanislaw Ulam and John von Neumann, is to have the computer replicate a task 

autonomously. Ulam and von Neumann began working separately on two different ideas, but 

came together in the late 1950s. This new project considered a liquid system as a group of cells, 

measuring how the movement of each cell was affected by its neighbors. Thus, the first model of 

cellular automata was born.10 

 Cellular automata operate on a three-step process: divide a system into a grid of cells 

assigning each cell an initial state along the way, iterate through each cell once the grid has been 

initialized and examine its neighbors, and finally recalculate each cells’ new state based on some 

system of rules. The most well-known example of this is Conway’s Game of Life. The game 

arose from Conway’s interest in a problem presented by von Neumann; he wanted to build a 

machine that could then build more of itself sustainably, indefinitely, and autonomously. His 

Game of Life is a game in which there are no players, the program plays itself through cellular 

automaton. The game begins by dividing the play space into a grid and randomly assigning each 

cell a state, dead or alive. The goal of the game is to simulate life, hence the title, with each cell 

representing a person or population. The initial randomization of the grid can be seeded or based 

on a random fill percentage defined by the developer. Figure 4.1 shows screen shots of 

Conway’s Game of Life with an initial fill percentage of 50%. I found the original rules for the 

                                                
10 Bialynicki-Birula, Iwo, and Iwona Bialynicka-Birula. Modeling reality: how computers mirror life. 
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game, which are the same rules used in Figure 4.1, on Wikipedia. The code is supplied in the 

Appendix. The rules are as follows: 

1. Any live cell with fewer than two live neighbors dies, simulating under population. 

2. Any live cell with exactly two or three neighbors lives on to the next generation. 

3. Any live cell with more than three live neighbors dies, simulating overpopulation. 

4. Any dead cell with exactly three live neighbors becomes a live cell, simulating 

reproduction. 

 These rules are applied each iteration, or game tick, and after the initial running of the 

program, the game continues play by itself. These rules are applied to each cell’s eight 

neighbors, a three-by-three grid surrounding the cell in question, unless the cell is a border cell.11 

                                                
 11 "Cellular automaton." Wikipedia. April 06, 2017. 

Figure 4.1 – An example of Conway’s Game of Life. The initialization of the grid is based off a 
random fill percentage of 50%. Black indicates a dead cell while white indicates an alive cell. The grid is 
50x50 cells. This is the first six frames rendering. 
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The original game, however, is designed to be played on an infinite grid without borders, but that 

is impossible in demonstration. Also, people have changed and created their own rulesets, some 

taking it upon themselves to try to create unique and interesting patterns with specific rule 

declarations. 

 In games, other than no-player games like 

Conway’s Game of Life, cellular automata can be 

used to do many things. One example that I came 

across was Sebastian Lague’s procedurally generated 

caves for games like Terraria.12 Figure 4.2 

demonstrates the result of applying the same process 

used in 

Conway’s 

Game of Life 

to generating 

textures and 

meshes for games. The caves in Figure 4.2 were also 

drawn based on the same random fill percent. Figure 4.3 

shows three caves that were drawn with three different 

random fill percentages.  

  The key difference to note between 

Conway’s Game of Life and this cave generation 

technique is the amount of smoothing iterations applied. 

                                                
 12 Lague, Sebastian. "Procedural Cave Generation tutorial." Unity. 

Figure 4.2 – Procedural cave generation 
in Unity. Each of these caves were generated with 
a random fill percentage of 45%. 

 

 

 
 

Figure 4.3 – Procedurally generated 
caves based on three different random fill 
percentages. In order from top to bottom, the 
random fill percentages were 30%, 50%, and 
60%.  
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Conway’s game continues indefinitely while the caves in Figures 4.2 and 4.3 only went through 

four iterations of smoothing. The amount of iterations can be varied to create unique results. 

Figure 4.4 demonstrates this phenomenon. 

 The cellular automata procedural generation technique has a runtime complexity of 

𝑂(𝑛+), where 𝑛 is the side lengths of the grid. This assumes that the grid is a square; if it were 

not a square, then the runtime complexity would be 𝑂(𝑛𝑘), where 𝑛 and 𝑘 are the length and 

width of the canvas, respectively. Even this runtime complexity is in simplified form because 

each cell’s neighbors must also be considered each iteration. For the purposes of this study and 

Conway’s game, the grids were all two-dimensional and each cell’s immediate eight neighbors 

were examined. Other variations of the algorithm may change the runtime complexity depending 

on the number of neighbors examined, the calculations involved with the neighbors, or the 

dimensions of the grid used.  

 

 
 
 
 
 
 
 
 

Figure 4.4 – An example showing differences between caves generated with differing amounts of 
smoothing iterations. The cave on the left went through only one iteration of smoothing while the cave on the right 
underwent 25 iterations. The differences are subtle, but the cave on the left has more jagged features and more noise. 
The cave on the right has more rounded edges and not as much noise scattered through its center regions. 
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Pixel.Defender 
Game Design Document 
 
Description of Game: 

 Pixel.Defender is a tower defense game with a twist. The game progresses like any 

normal tower defense game: the player spends his or her initial time setting up a base, arms the 

pathway to their base with towers, and enemies spawn in waves making their way toward the 

player’s base. The twist is that each time the player begins a new play session, the map is 

procedurally generated with cellular automata. It is seeded, so the player can replay any map that 

they particularly enjoy, and the player has the option to use any seed or just randomize it each 

time before he or she begins. 

 Due to the nature of procedural generation, it is hard to programmatically place the 

player’s and enemy’s bases. Therefore, the player chooses where each of the bases spawn on 

startup. The player may place either base on only valid tiles, which are denoted by color. The 

color of each tile is determined programmatically with cellular automata. The algorithm may 

produce sections of the map that are closed off from other portions; however, the player is still 

allowed to place there. Should the enemies run into walls that are blocking them from the 

players, they will simply begin tunneling through the wall. Each tile has a life point value 

associated with it, and should a tile’s life points reach zero, the tile becomes passable and 

changes color. 

Key Features: 

• Player towers may only be placed on non-passable tiles. 

• The player may only place towers on one color while the enemy may only pass 

over the other color. 
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• Each tower is a square, maintaining the pixelated artwork and title to the game. 

• Towers that are bigger squares are harder to place, due to the procedural 

generation; however, these towers provide more defense. 

• Enemies come in waves, allowing the player time to place more towers and 

purchase more defense during the downtime. 

• Players may also purchase power-ups which may build up or tear down 

impassible areas of the map. 

• The map is generated based on the Procedural Cave Generation code in the 

Appendix, promoting impassible areas of the map to take up the perimeter of the 

game. 

Title Screen Procedurally Generated with Seed “Title Screen”: 
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CONCLUSION 
 
 I conducted this study to increase my ability to program complex algorithms, as well as 

understand them. Now, reaching the end of my analysis, I feel much more confident in my 

ability to examine and understand complicated code when it is presented to me. In this study, I 

analyzed and wrote four different procedural generation algorithms. These four algorithms were 

chosen based on interest, familiarity, and variety with emphasis placed on writing the actual code 

myself.  

 One interesting and key observation came out of this analysis. Each game contains some 

amount of crossover between algorithms, or each game could be further improved if written in 

conjunction with one of the other algorithms in the study. For example, good game design 

involves presenting content to the player little at a time. As the levels progress, so does the 

challenge and amount of content. It is bad practice to give the player all the content on first load 

in; that would overwhelm the player. HoverCube, according to the Game Design Document, 

randomly generates each chunk’s gap that the player must traverse. It would be interesting to 

instead generate each chunk with Perlin noise at the beginning of the game. This would create 

smoother transitions between chunks and not create as much of a challenge for the player at the 

beginning of the game. As the player progresses, the noise scale value could be modified to 

increase the amount of stark changes in gap position. This, of course, would change the chunk-

based algorithm slightly. The chunks are still randomly generated, but have more of a 

smoothness between them. The problem lies with randomly selecting which chunk to render; as 

the chunks fall off the screen, they would have to be put back in correct order in the pool.  
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 Another interesting example of crossover is the similarity between Perlin noise and 

cellular automata. The Pixel.Defender screenshot of the title screen could have been rendered in 

either algorithm. They are very similar in the way they work: divide the screen into a grid, 

generate values for each cell based on a scale and value, and then run some calculations. The 

difference is that Perlin noise generates a range of numbers, generally from 0.0 to 1.0, while 

cellular automata gives each cell a state. However, cellular automata can give each cell any 

number of states, increasing the difficulty of the algorithm, but further mimicking Perlin noise. 

On the other hand, Perlin noise could be given conditions to further mimic cellular automata. For 

example, every cell given a value between 0.0 and 0.5 could be normalized to 0.0, and likewise 

with 1.0 at the other end of the spectrum. This method somewhat defeats the purpose of the 

Perlin noise algorithm, which is to create smoother transitions. However, the important thing to 

note is not the negation of the algorithm, just that it takes one simple condition to turn the 

algorithm into some mock-cellular automata algorithm. Each algorithm appears to be just a few 

mutations from one another, though the code is very different. 

 There are many different algorithms that embody procedural generation. Each algorithm 

is uniquely suited to solve a niche problem that developers everywhere have experienced over 

the years. After examining several of the more common algorithms and getting to personally 

write each one, I plan to create a working alpha-version of each projected game in this document 

at the very least. It is much easier to write a complicated algorithm to generate content 

procedurally rather than to hardcode every piece of content in a game by way of menially 

configuring each piece. 
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APPENDIX 
  

 This Appendix contains code, pseudo-code, or other related material that took up too 

much space in the middle of the document. Thus, posted sections that follow this statement are 

most likely large. They will be grouped together with their relevant constituents (for example, 

classes and methods associated with a single algorithm), and they will be separated from non-

related objects via a page break, such as the one after this sentence. 
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Chunk-Based Procedural Generation Example 
	
Chunk_Generator.pde 
 
// driver class 
Player player; 
Chunk[] chunks; 
 
final int NUM_CHUNKS = 100; 
final int PLAYER_SIZE = 50; 
final int BOUNDS_HEIGHT = (PLAYER_SIZE/2) - 1; 
 
int gap, count; 
 
void setup() { 
  size(1000, 500); 
 
  rectMode(CENTER); 
 
  count = 0; 
  gap = width/5; // gap to be between the rendered chunks 
 
  player = new Player(width/5, height/2, PLAYER_SIZE); 
  chunks = new Chunk[NUM_CHUNKS]; 
 
  initializeChunks(); // generate the pool 
} 
 
void draw() { 
  background(200); 
  noStroke(); 
  player.drawPlayer(); 
 
  // draw bounds 
  fill(0); 
  rect(width/2, BOUNDS_HEIGHT/2, width, BOUNDS_HEIGHT); 
  rect(width/2, height-(BOUNDS_HEIGHT/2), width, BOUNDS_HEIGHT); 
 
  // create the gap between obstacles 
  if (count == 0) { 
    chunks[selectRandomIndex()].toggleChunk(); 
  } 
 
  // draw and move the chunks on the screen 
  for (int i = 0; i < chunks.length; i++) { 
    if (chunks[i].onScreen) { 
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      chunks[i].drawChunk(); 
      chunks[i].moveChunk(); 
    } 
  } 
 
  checkIfChunksOffScreen(); 
  count = (count+1) % gap; // creates the gap between chunk 
renderings 
} 
 
// create the chunks 
void initializeChunks() { 
  for (int i = 0; i < chunks.length; i++) { 
    chunks[i] = new Chunk(width, PLAYER_SIZE, BOUNDS_HEIGHT); 
  } 
} 
 
// check for chunks fallen off of the screen 
void checkIfChunksOffScreen() { 
  for (int i = 0; i < chunks.length; i++) { 
    if (chunks[i].x < 0) { 
      chunks[i].toggleChunk(); // toggle that it is now off 
screen 
    } 
  } 
} 
 
int selectRandomIndex() {  
  int rand = (int)random(0, NUM_CHUNKS); 
  while (chunks[rand].onScreen) {      // if the selected chunk 
is already rendered 
    rand = (int)random(0, NUM_CHUNKS); // continue selecting a 
random chunk 
  } 
  return rand; 
} 
 
// moving the player based on input 
void keyPressed() { 
  if (key == CODED) { 
    if (keyCode == UP || keyCode == RIGHT) { 
      player.moveUp(); 
    } else if (keyCode == DOWN || keyCode == LEFT) { 
      player.moveDown(); 
    } 
  } 
} 
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Chunk.pde 
 
// a chunk consists of two vertical bars, or obstacles 
// each chunk is added to a pool in the driver class 
class Chunk { 
   
  int x; 
  int padding, obsWidth, offset; 
  int height1, height2; 
  int boundsHeight; 
   
  boolean onScreen; 
 
  Chunk(int x, int playerSize, int boundsHeight) { 
    onScreen = false; // each chunk starts off screen 
    padding = playerSize+obsWidth; 
    obsWidth = 20; // width of obstacle 
     
    offset = obsWidth/2; 
    this.x = x + offset; 
    this.boundsHeight = boundsHeight; 
     
    // calculating the random heights 
    // height1 is based on a random number generator 
    // height2 is based on height one to account for the player 
gap 
    this.height1 = (int)random(0, height-playerSize-padding-
boundsHeight*2); 
    this.height2 = height - 
(height1+playerSize+padding+boundsHeight*2); 
 
    } 
 
  // drawing the two red, vertical bars 
  void drawChunk() {  
    fill(255, 0, 0); 
    rect(x, height1/2 + boundsHeight, obsWidth, height1); 
    rect(x, height-(height2/2)-boundsHeight, obsWidth, height2); 
  } 
 
  void moveChunk() { 
    x--; 
  } 
   
  void toggleChunk() { 
   this.onScreen = !this.onScreen; // detect whether the chunk 
         // is currently rendered 
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   x = width + offset; // reset the chunk to off the right side 
       // of the screen 
  } 
} 
 
 

Player.pde 
 
// the player 
class Player { 
 
  int x, y, size; 
 
  private int w, h; 
 
  Player(int x, int y, int size) { 
    this.x = x; 
    this.y = y; 
    this.size = size; 
    w = size; 
    h = size; 
  } 
 
  void drawPlayer() { 
    fill(255); 
    rect(x, y, w, h); 
  } 
 
  void moveUp() { 
    if (y - size > 0) { 
      y -= size; 
    } 
  } 
 
  void moveDown() { 
    if (y + size < height) { 
      y += size; 
    } 
  } 
} 
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Perlin Noise Algorithm Pseudo Code13 
 
// Function to linearly interpolate between a0 and a1 
// Weight w should be in the range [0.0, 1.0] 
function lerp(float a0, float a1, float w) { 
 return (1.0 - w)*a0 + w*a1; 
} 
 
// Computes the dot product of the distance and gradient 
vectors. 
function dotGridGradient(int ix, int iy, float x, float y) { 
 
 // Precomputed (or otherwise) gradient vectors at each grid 
node 
 extern float Gradient[IYMAX][IXMAX][2]; 
 
 // Compute the distance vector 
 float dx = x - (float)ix; 
 float dy = y - (float)iy; 
 
 // Compute the dot-product 
 return (dx*Gradient[iy][ix][0] + dy*Gradient[iy][ix][1]); 
} 
 
// Compute Perlin noise at coordinates x, y 
function perlin(float x, float y) { 
 
 // Determine grid cell coordinates 
 int x0 = (x > 0.0 ? (int)x : (int)x - 1); 
 int x1 = x0 + 1; 
 int y0 = (y > 0.0 ? (int)y : (int)y - 1); 
 int y1 = y0 + 1; 
 
 // Determine interpolation weights 
 // Could also use higher order polynomial/s-curve here 
 float sx = x - (float)x0; 
 float sy = y - (float)y0; 
 
 // Interpolate between grid point gradients 
 float n0, n1, ix0, ix1, value; 
 n0 = dotGridGradient(x0, y0, x, y); 
 n1 = dotGridGradient(x1, y0, x, y); 
 ix0 = lerp(n0, n1, sx); 
 n0 = dotGridGradient(x0, y1, x, y); 

                                                
13 Pseudo Code provided by Wikipedia, “Perlin Noise” 
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 n1 = dotGridGradient(x1, y1, x, y); 
 ix1 = lerp(n0, n1, sx); 
 value = lerp(ix0, ix1, sy); 
 
 return value; 
} 
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Perlin Noise Mesh Generator in Unity14 

Noise.cs 
 
using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
 
public static class Noise { 
 
    public static float[,] GenerateNoiseMap(int mapWidth,  
 int mapHeight, int seed,float scale, int octaves,  
 float persistance, float lacunarity, Vector2 offset) 
    { 
        float[,] noiseMap = new float[mapWidth, mapHeight]; 
 
        System.Random prng = new System.Random(seed); 
        Vector2[] octaveOffsets = new Vector2[octaves]; 
        for(int i=0; i < octaves; i++) 
        { 
            float offsetX = prng.Next(100000, 100000)  
   + offset.x; 
            float offsetY = prng.Next(100000, 100000)  
   + offset.y; 
            octaveOffsets[i] = new Vector2(offsetX, offsetY); 
        } 
 
        if (scale <= 0) 
        { 
            scale = 0.0001f; 
        } 
 
        float maxNoiseHeight = float.MinValue; 
        float minNoiseHeight = float.MaxValue; 
 
        float halfWidth = mapWidth / 2f; 
        float halfHeight = mapHeight / 2f; 
 
        for(int y = 0; y < mapHeight; y++) 
        { 
            for(int x = 0; x < mapWidth; x++) 
            { 
 

                                                
14 Code inspired by Sebastian Lague in his video series “Procedural Landmass Generation”. It is undocumented due 
to the sheer mass of it. 
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                float amplitude = 1; 
                float frequency = 1; 
                float noiseHeight = 0; 
                for (int i = 0; i < octaves; i++) 
                { 
                    float sampleX = (x - halfWidth) / scale  
     * frequency + octaveOffsets[i].x; 
                    float sampleY = (y - halfHeight) / scale  
     * frequency + octaveOffsets[i].y; 
 
                    float perlinValue = Mathf.PerlinNoise( 
     sampleX, sampleY) * 2 - 1; 
 
                    noiseHeight += perlinValue * amplitude; 
 
                    amplitude *= persistance; 
                    frequency *= lacunarity; 
                } 
 
                if(noiseHeight > maxNoiseHeight) 
                { 
                    maxNoiseHeight = noiseHeight; 
                } 
                else if(noiseHeight < minNoiseHeight) 
                { 
                    minNoiseHeight = noiseHeight; 
                } 
 
                noiseMap[x, y] = noiseHeight; 
            } 
        } 
 
        for (int y = 0; y < mapHeight; y ++) 
        { 
            for (int x = 0; x < mapWidth; x++) 
            { 
                noiseMap[x, y] = Mathf.InverseLerp(   
    minNoiseHeight, maxNoiseHeight,  

noiseMap[x, y]); 
            } 
        } 
 
        return noiseMap; 
    } 
} 
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MapGenerator.cs 
 
using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
 
public class MapGenerator : MonoBehaviour { 
 
    public enum DrawMode { NoiseMap, ColorMap, Mesh } 
    public DrawMode drawMode; 
 
    public int mapWidth; 
    public int mapHeight; 
    public float noiseScale; 
    public bool autoUpdate; 
 
    public float meshHeightMultipler; 
 
    public int octaves; 
    [Range(0,1)] 
    public float persistance; 
    public float lacunarity; 
 
    public string seed; 
    public Vector2 offset; 
 
    public TerrainType[] regions; 
 
    public void Start() 
    { 
        GenerateMap(seed); 
    } 
 
    public void GenerateMap(string seed) 
    { 
        float[,] noiseMap = Noise.GenerateNoiseMap(mapWidth, 
  mapHeight, seed.GetHashCode(), noiseScale, octaves,  
  persistance, lacunarity, offset); 
 
        Color[] colorMap = new Color[mapWidth * mapHeight]; 
        for (int y = 0; y < mapHeight; y++) 
        { 
            for (int x = 0; x < mapWidth; x++) 
            { 
                float currentHeight = noiseMap[x, y]; 
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                for(int i = 0; i < regions.Length; i++) 
                { 
                    if(currentHeight <= regions[i].height) 
                    { 
                        colorMap[y * mapWidth + x] =  
      regions[i].color; 
                        break; 
                    } 
                } 
            } 
        } 
 
        MapDisplay display = FindObjectOfType<MapDisplay>(); 
        if (drawMode == DrawMode.NoiseMap) 
        { 
            display.DrawTexture( 
   TextureGenerator.TextureFromHeightMap(noiseMap)); 
        } 
        else if(drawMode == DrawMode.ColorMap) 
        { 
            display.DrawTexture( 
   TextureGenerator.TextureFromColorMap(colorMap,  
   mapWidth, mapHeight)); 
        } 
        else if(drawMode == DrawMode.Mesh) 
        { 
            display.DrawMesh( 
   MeshGenerator.GenerateTerrainMesh(noiseMap,  
   meshHeightMultipler),  
   TextureGenerator.TextureFromColorMap(colorMap,  
   mapWidth, mapHeight)); 
        } 
    } 
 
    void OnValidate() 
    { 
        if(mapWidth < 1) 
        { 
            mapWidth = 1; 
        } 
        if(mapHeight < 1) 
        { 
            mapHeight = 1; 
        } 
        if(lacunarity < 1) 
        { 
            lacunarity = 1; 



Page	|	47		
	

        } 
        if(octaves < 0) 
        { 
            octaves = 0; 
        } 
    } 
} 
 
[System.Serializable] 
public struct TerrainType 
{ 
    public string name; 
    public float height; 
    public Color color; 
} 
 
 

MapDisplay.cs 
 
using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
 
public class MapDisplay : MonoBehaviour { 
 
    public Renderer textureRender; 
    public MeshFilter meshFilter; 
    public MeshRenderer meshRenderer; 
 
    public void DrawTexture(Texture2D texture) { 
         
 
        textureRender.sharedMaterial.mainTexture = texture; 
        textureRender.transform.localScale = new Vector3( 
  texture.width, 0,texture.height); 
    } 
 
    public void DrawMesh(MeshData meshData, Texture2D texture) 
    { 
        meshFilter.sharedMesh = meshData.CreateMesh(); 
        meshRenderer.sharedMaterial.mainTexture = texture; 
    } 
} 
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MeshGenerator.cs 
 
using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
 
public static class MeshGenerator 
{ 
 
    public static MeshData GenerateTerrainMesh( 
      float[,] heightMap, float heightMultiplier) 
    { 
        int width = heightMap.GetLength(0); 
        int height = heightMap.GetLength(1); 
        float topLeftX = (width - 1) / -2f; 
        float topLeftZ = (height - 1) / 2f; 
 
        MeshData meshData = new MeshData(width, height); 
        int vertexIndex = 0; 
 
        for (int y = 0; y < height; y++) 
        { 
            for (int x = 0; x < width; x++) 
            { 
                meshData.vertices[vertexIndex] =  
    new Vector3(topLeftX + x,     
    heightMap[x, y] * heightMultiplier,  
    topLeftZ - y); 
 
                meshData.uvs[vertexIndex] =  
    new Vector2(x / (float)width,  
    y / (float)height); 
 
                if (x < width - 1 && y < height - 1) 
                { 
                    meshData.AddTriangle(vertexIndex,  
     vertexIndex + width + 1,  
    vertexIndex + width); 
                    meshData.AddTriangle( 
     vertexIndex + width + 1,  
     vertexIndex, vertexIndex + 1); 
                } 
                vertexIndex++; 
            } 
        } 
 
        return meshData; 
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    } 
} 
 
public class MeshData 
{ 
    public Vector3[] vertices; 
    public int[] triangles; 
    public Vector2[] uvs; 
 
    int triangleIndex; 
 
    public MeshData(int meshWidth, int meshHeight) 
    { 
        vertices = new Vector3[meshWidth * meshHeight]; 
        uvs = new Vector2[meshWidth * meshHeight]; 
        triangles = new int[(meshWidth - 1)  
   * (meshHeight - 1) * 6]; 
    } 
 
    public void AddTriangle(int a, int b, int c) 
    { 
        triangles[triangleIndex] = a; 
        triangles[triangleIndex + 1] = b; 
        triangles[triangleIndex + 2] = c; 
        triangleIndex += 3; 
    } 
 
    public Mesh CreateMesh() 
    { 
        Mesh mesh = new Mesh(); 
        mesh.vertices = vertices; 
        mesh.triangles = triangles; 
        mesh.uv = uvs; 
        mesh.RecalculateNormals(); 
        return mesh; 
    } 
}  
 
 

TextureGenerator.cs	
 
using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
 
public static class TextureGenerator { 
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    public static Texture2D TextureFromColorMap( 
  Color[] colorMap, int width, int height) 
    { 
        Texture2D texture = new Texture2D(width, height); 
        texture.filterMode = FilterMode.Point; 
        texture.wrapMode = TextureWrapMode.Clamp; 
        texture.SetPixels(colorMap); 
        texture.Apply(); 
        return texture; 
    } 
 
    public static Texture2D TextureFromHeightMap( 
  float[,] heightMap) 
    { 
        int width = heightMap.GetLength(0); 
        int height = heightMap.GetLength(1); 
 
        Texture2D texture = new Texture2D(width, height); 
 
        Color[] colorMap = new Color[width * height]; 
        for (int y = 0; y < height; y++) 
        { 
            for (int x = 0; x < width; x++) 
            { 
                colorMap[y * width + x] =  
    Color.Lerp(Color.black, Color.white,  
    heightMap[x, y]); 
            } 
        } 
        return TextureFromColorMap(colorMap, width, height); 
    } 
} 
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Boids, An Example of the Flocking Algorithm15 
	
Boid.pde 
 
// "bird-oid" 
class Boid { 
  PVector position; 
  PVector velocity; 
  PVector acceleration; 
 
  float r; 
  float maxforce; // maximum steering force 
  float maxspeed; // maximum speed 
 
  Boid(float x, float y) { 
    acceleration = new PVector(0, 0); // no acceleration 
 
    float angle = random(TWO_PI); 
    velocity = new PVector(cos(angle), sin(angle)); 
 
    position = new PVector(x, y); 
    r = 2.0; 
    maxspeed = 2; 
    maxforce = 0.03; 
  } 
 
  void run(ArrayList<Boid> boids) { 
    flock(boids); 
    update(); 
    borders(); 
    render(); 
  } 
 
  void applyForce(PVector force) { 
    acceleration.add(force); 
  } 
 
  // new acceleration is calculated 
  // based on separation, alignment, cohesion 
  void flock(ArrayList<Boid> boids) { 
    PVector sep = separate(boids); 
    PVector ali = align(boids); 
    PVector coh = cohesion(boids); 
 

                                                
15 Processing Foundation. "Flocking \ Examples \ Processing.org." 
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    // weight the forces arbitrarily 
    sep.mult(1.5); 
    ali.mult(1.0); 
    coh.mult(1.0); 
 
    // add these forces to new acceleration 
    applyForce(sep); 
    applyForce(ali); 
    applyForce(coh); 
  } 
 
  void update() { 
    // update the velocity 
    velocity.add(acceleration); 
    // limit speed 
    velocity.limit(maxspeed); 
    position.add(velocity); 
    // reset the acceleration back to 0 
    acceleration.mult(0); 
  } 
 
  // calculates and applies a steering force in a direction 
  PVector seek(PVector target) { 
    PVector desired = PVector.sub(target, position); 
 
    // scale to max speed 
    desired.normalize(); 
    desired.mult(maxspeed); 
 
    // steering = desired - velocity 
    PVector steer = PVector.sub(desired, velocity); 
    steer.limit(maxforce); 
    return steer; 
  } 
 
  // drawing the boids 
  void render() { 
    // draw a triangle rotated in direction of velocity 
    float theta = velocity.heading2D() + radians(90); 
 
    fill(200, 100); 
    stroke(255); 
    pushMatrix(); 
    translate(position.x, position.y); 
    rotate(theta); 
    beginShape(TRIANGLES); 
    vertex(0, -r*2); 
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    vertex(-r, r*2); 
    vertex(r, r*2); 
    endShape(); 
    popMatrix(); 
  } 
 
  // making the boids wrap around the screen 
  void borders() { 
    if (position.x < -r) position.x = width+r; 
    if (position.y < -r) position.y = height+r; 
    if (position.x > width+r) position.x = -r; 
    if (position.y > height+r) position.y = -r; 
  } 
 
  // finds neighbors and steers away from them 
  PVector separate(ArrayList<Boid> boids) { 
    float desiredSeparation = 25.0; 
    PVector steer = new PVector(0, 0, 0); 
    int count = 0; 
 
    // loop through all the other boids to find neighbors 
    for (Boid other : boids) { 
      float d = PVector.dist(position, other.position); 
      if (d > 0 && d < desiredSeparation) { 
        // calculate vector pointing away from neighbor 
        PVector diff = PVector.sub(position, other.position); 
        diff.normalize(); 
        diff.div(d); 
        steer.add(diff); 
        count++; // count thy neighbors 
      } 
    } 
    // average it out 
    if (count > 0) { 
      steer.div((float)count); 
    } 
 
    // if that doesn&apos;t zero-out the vector 
    if (steer.mag() > 0) { 
      // Reynolds&apos; algorithm  
      steer.normalize(); 
      steer.mult(maxspeed); 
      steer.sub(velocity); 
      steer.limit(maxforce); 
    } 
    return steer; // return the steering force  
  } 
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  // calculate the average velocity of all neighbor boids 
  PVector align (ArrayList<Boid> boids) { 
    float neighborDist = 50; 
    PVector sum = new PVector(0, 0); 
    int count = 0; 
    for (Boid other : boids) { 
      float d = PVector.dist(position, other.position); 
      if (d > 0 && d < neighborDist) { 
        sum.add(other.velocity); 
        count++; 
      } 
    } 
 
    // computing average 
    if (count > 0) { 
      sum.div((float)count); 
 
      // Reynolds&apos; algorithm 
      sum.normalize(); 
      sum.mult(maxspeed); 
      PVector steer = PVector.sub(sum, velocity); 
      steer.limit(maxforce); 
      return steer; 
    } else { 
      return new PVector(0, 0); 
    } 
  } 
 
  // calculate "center of mass" of all neighbors and steer there 
  PVector cohesion(ArrayList<Boid> boids) { 
    float neighborDist = 50; 
    PVector sum = new PVector(0, 0); // start with empty vector 
    int count = 0; 
    for (Boid other : boids) { 
      float d = PVector.dist(position, other.position); 
      if (d > 0 && d < neighborDist) { 
        sum.add(other.position); // add the position 
        count++; 
      } 
    } 
    if (count > 0) { 
      sum.div(count); 
      return seek(sum); // steer toward the position 
    } else { 
      return new PVector(0, 0); 
    } 
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  } 
} 
 

	
Flock.pde 
 
class Flock { 
 
  ArrayList<Boid> boids; // list of the boids 
 
  Flock() { 
    boids = new ArrayList<Boid>(); 
  } 
 
  void run() { 
    for (Boid b : boids) { 
      b.run(boids); 
    } 
  } 
 
  void addBoid(Boid b) { 
    boids.add(b); 
  } 
} 
 
 
Flocking.java 
 
Flock flock; 
void setup() { 
  size(640, 360); 
  flock = new Flock(); 
  // add an initial set up boids 
  for (int i = 0; i < 150; i++) { 
    flock.addBoid(new Boid(width/2, height/2)); 
  } 
} 
 
void draw() { 
  background(50); 
  flock.run(); 
} 
 
// to add another boid 
void mousePressed() { 
  flock.addBoid(new Boid(mouseX, mouseY)); 
}	
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Separation Steering: Random Dungeon Generation16 
	
Room.pde 
 
class Room { 
  float x, y, w, h; 
  float xPressure, yPressure; 
 
  Room(float x, float y, float w, float h) { 
    this.x = x; 
    this.y = y; 
    this.w = w; 
    this.h = h; 
  } 
 
  void drawRoom() { 
    rect(x, y, w, h); // Processing’s API 
  } 
 
  // checking whether a room overlaps another 
  boolean overlaps(Room other) { 
    return x < (other.x+other.w) && (x+w) > other.x && 
      y < (other.y+other.h) && (y+h) > other.y; 
  } 
 
  // calculating the separation pressure  
  void separationPressure(ArrayList<Room> rooms) { 
    int count = 0; 
    for (Room r : rooms) { 
 // calculate distance from this room to neighbors 
      float distance = dist(x, y, r.x, r.y);  
 
      // check that this room does not overlap with others  
      // calculate pressure 
      if (this != r && overlaps(r)) { 
        float xDiffNorm = (r.x - x)/distance; 
        float yDiffNorm = (r.y - y)/distance; 
 
        xPressure += xDiffNorm; 
        yPressure += yDiffNorm; 
 
        count++; 
      } 
    } 

                                                
16 Code inspired by Dr. Jeff Matocha 
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    // normalize the pressure across all neighbors 
    if (count > 0) { 
      xPressure /= count; 
      yPressure /= count; 
 
      float vectorHypotenuse =  
  sqrt(pow(xPressure, 2) + pow(yPressure, 2)); 
 
      xPressure /= vectorHypotenuse; 
      yPressure /= vectorHypotenuse; 
 
      x -= xPressure; 
      y -= yPressure; 
    } 
  } 
} 
 
 
Dungeon_Generator.pde 
 
ArrayList<Room> rooms; 
ArrayList<Room> drawnRooms; 
boolean pause; 
int count; 
 
final int NUM_ROOMS = 100; // number of initial rooms 
 
void setup() { 
  size(500, 500); 
  noFill(); 
 
  rooms = new ArrayList<Room>(); // a list of all of the rooms 
generated 
  drawnRooms = new ArrayList<Room>(); // a list of only drawn 
rooms in the finished product 
  initializeRooms(); 
 
  pause = false; 
  count = 0; 
 
  selectAndDraw(); // pruning the rooms 
  drawLines(); // drawing crude lines between rooms 
    
} 
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// the draw() method is commented out because it is unnecessary 
for room generation 
// this method demonstrates the separation/steering parts of the
// algorithm, 
// but not the finished product, which contains pruning of rooms
// and lines 
//void draw() { 
//  if (!pause) { 
//    background(200); 
//    for (Room r : rooms) { 
//      r.drawRoom(); 
//    } 
//    separate(); 
//  } 
//} 
 
void selectAndDraw() { 
  int i = 0; 
  while (i < 1000) { 
    separate(); // separate all of the rooms 
    i++; 
  } 
 
  background(200); 
  int percent = 15; 
  for (int j = 0; j < NUM_ROOMS; j++) { 
    // if room isn&apos;t out of bounds, generate random number 
    // rooms are only drawn if random number is less than 
population percent 
    if (!outOfBounds(rooms.get(j)) && (int)random(0, 100) < 
percent) { 
      rooms.get(j).drawRoom(); 
      drawnRooms.add(rooms.get(j)); // the list of drawn rooms 
    } 
  } 
} 
 
void drawLines() { 
  for (int j = 0; j < drawnRooms.size(); j++) {  
    try { 
      Room r1 = drawnRooms.get(j); 
      Room r2 = drawnRooms.get(j+1); 
      line(r1.x+(r1.w/2), r1.y+(r1.h/2), r2.x+(r2.w/2), 
r2.y+(r2.h/2)); //drawing crude lines 
    }  
    catch (Exception e) { 
      // do nothing 
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    } 
  } 
} 
 
boolean outOfBounds(Room r) { 
  // checking bounds, want to remove all rooms off-screen 
  return (r.x+r.w) > width-10 || (r.y+r.h) > height-10  
  || r.x < 10 || r.y < 10; 
} 
 
void separate() { 
  for (Room r : rooms) { 
    r.separationPressure(rooms); // calculating the force 
  } 
} 
 
void initializeRooms() { 
  int offset = 100; 
  for (int i = 0; i < NUM_ROOMS; i++) { 
    // initializing the rooms to be random widths/heights 
    rooms.add(new Room(random((width/2)-offset, 
(width/2)+(offset/2)),  
      random((height/2)-offset, (height/2)+(offset/2)),  
      random(10, 100), random(10, 100))); 
  } 
} 
 
void keyPressed() { 
  if (key == &apos;p&apos; || key == &apos;P&apos;) { 
    pause = !pause; 
    save("Dungeon_Creater_"+count+".png"); 
    count++; 
  } 
} 
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Conway’s Game of Life Example with Original Rules 
	
Conway_Game_of_Life.pde 
 
final int RANDOM_FILL_PERCENT = 50; 
final int SQUARE_SIZE = 1; 
 
// use 2 grids: 
// calculate 1 grid, dump it into the 2nd 
// then switch out the grids 
int[][] grid1; 
int[][] grid2; 
 
int count = 0; 
 
void setup() { 
  size(500, 500); 
 
  grid1 = new int[width/SQUARE_SIZE][height/SQUARE_SIZE]; 
  grid2 = new int[width/SQUARE_SIZE][height/SQUARE_SIZE]; 
   
  initializeGrid(); 
  frameRate(10); // slow down the process 
  noStroke(); 
} 
 
void draw() { 
  background(0); 
  if (count % 2 == 0) { 
    simulate(grid1); 
  } else { 
    simulate(grid2); 
  } 
 
  drawGrid(frameCount % 2 == 0 ? grid2 : grid1); 
  count++; 
} 
 
// begin by randomly filling the grid 
// each state is randomly dead or alive 
// this is based on some RANDOM_FILL_PERCENT 
// changing this value gives varying results 
void initializeGrid() { 
  for (int i = 0; i < grid1.length; i++) { 
    for (int j = 0; j < grid1[0].length; j++) { 
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      grid1[i][j] = (int)random(0, 100) < RANDOM_FILL_PERCENT ? 
0 : 1; 
      grid2[i][j] = 0; 
    } 
  } 
} 
 
// draw the grid to the screen 
void drawGrid(int[][] grid) { 
  for (int i = 0; i < grid.length; i++) { 
    for (int j = 0; j < grid[0].length; j++) { 
      if (grid[i][j] == 0) { 
        fill(0); // black = dead 
      } else if (grid[i][j] == 1) { 
        fill(255); // white = alive 
      } 
      rect(i*SQUARE_SIZE, j*SQUARE_SIZE, SQUARE_SIZE, 
SQUARE_SIZE); 
    } 
  } 
} 
 
// simulate life happening autonomously 
void simulate(int[][] grid) { 
  // calculate the entire grid and store it in 2nd grid 
  // switch out the two grids every frame 
  int[][] otherGrid = grid == grid1 ? grid2 : grid1; 
  for (int i = 0; i < grid.length; i++) { 
    for (int j = 0; j < grid[0].length; j++) { 
      // first calculate the value of all neighbors 
      int neighborVal = calculateNeighborhood(i, j, grid);  
      // apply rules 
      if (grid[i][j] == 1 && neighborVal < 2) { 
   // this cell dies due to underpopulation 
        otherGrid[i][j] = 0;  
      } else if (grid[i][j] == 1 &&  
  neighborVal == 2 || neighborVal == 3) { 
        // this cell continues to next generation 
        otherGrid[i][j] = 1;  
      } else if (grid[i][j] == 1 && neighborVal > 3) { 
   // this cell dies due to overpopulation 
        otherGrid[i][j] = 0;  
      } else if (grid[i][j] == 0 && neighborVal == 3) { 
   // this cell becomes alive due to reproduction 
        otherGrid[i][j] = 1;  
      } else { 
        otherGrid[i][j] = 0; // clear out the cell otherwise 
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      } 
    } 
  } 
} 
 
// calculate the value of all neighbors 
// parameters are x and y position of cell to look at 
int calculateNeighborhood(int x, int y, int[][] grid) { 
  int neighborVal = 0; 
  for (int neighborX = x-1; neighborX <= x+1; neighborX++) { 
    for (int neighborY = y-1; neighborY <= y+1; neighborY++) { 
      if (inBounds(neighborX, neighborY)) { // make sure it is a 
legal cell 
        if (neighborX != x || neighborY != y) { // don&apos;t 
count cell in question 
          neighborVal += grid[neighborX][neighborY]; 
        } 
      } 
    } 
  } 
  return neighborVal; 
} 
 
// check that a cell is valid and in the grid 
boolean inBounds(int x, int y) { 
  return x >= 0 && x < width/SQUARE_SIZE && y >= 0 && y < 
height/SQUARE_SIZE; 
} 
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Procedural Cave Generation in Unity: Cellular Automata17 
 

MapGenerator.cs 
	
using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
using System; 
 
public class MapGenerator : MonoBehaviour { 
 
    public int width; 
    public int height; 
 
    public string seed; 
    public bool useRandomSeed; 
 
    [Range(0,100)] 
    public int randomFillPercent; 
 
    int[,] map; 
 
    // initialization 
    void Start() { 
        GenerateMap (); 
    } 
 
    // generate new maps on mouse clicks 
    void Update() { 
        if (Input.GetKeyDown(KeyCode.Space)) { 
            GenerateMap (); 
        } 
    } 
 
    // create the grid of cells 
    void GenerateMap() { 
        map = new int[width, height]; 
        RandomFillMap (); 
 
        for (int i = 0; i < 5; i++) { 
            SmoothMap (); 
        } 
    } 
 

                                                
17 Code inspired by Sebastian Lague in his video series “Procedural Cave Generation” on the Unity website. 
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    // smoothing the map to have rounded edges 
    void SmoothMap() { 
        for (int x = 0; x < width; x++) { 
            for (int y = 0; y < height; y++) { 
                int neighborWallTiles =  
    GetSurroundingWallCount (x, y); 
 
                if (neighborWallTiles > 4) { 
                    map [x, y] = 1; 
                } else if (neighborWallTiles < 4) { 
                    map [x, y] = 0; 
                } 
            } 
        } 
    } 
 
    // want to know how many neighbors are walls 
    int GetSurroundingWallCount(int gridX, int gridY) { 
        int wallCount = 0; 
        for (int neighborX = gridX - 1;  
   neighborX <= gridX + 1; neighborX++) { 
            for (int neighborY = gridY - 1;  
   neighborY <= gridY + 1; neighborY++) { 
                //bounds checking 
                if (neighborX >= 0 && neighborX < width  
    && neighborY >= 0 && neighborY < height) { 
                    // check against looking at self 
                    if (neighborX != gridX ||  
     neighborY != gridY) {  
                        // grid values are 0 or 1 
                        // will only increment if 1,  
        // which is a wall 
                        wallCount += map [neighborX, neighborY]; 
                    } 
                } else { 
    // encourage growth of walls around edge 
                    wallCount++;              
            } 
            } 
        } 
        return wallCount; 
    } 
 
    // randomly fill the map 
    void RandomFillMap() { 
        if (useRandomSeed) { 
            seed = Time.time.ToString (); 
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        } 
 
        // pseudo-random number generator 
        System.Random pseudoRand =  
  new System.Random (seed.GetHashCode ()); 
 
        for (int x = 0; x < width; x++) { 
            for (int y = 0; y < height; y++) { 
                if (x == 0 || x == width - 1  
    || y == 0 || y == height - 1) { 
                    map [x, y] = 1; 
                } else { 
                    // assign 0 or 1 based on randomFillPercent 
                    map [x, y] = (pseudoRand.Next (0, 100)  
     < randomFillPercent ? 1 : 0); 
                } 
            } 
        }     
    } 
 
    // render to Unity window 
    void OnDrawGizmos() { 
        if (map != null) { 
            for (int x = 0; x < width; x++) { 
                for (int y = 0; y < height; y++) { 
                    Gizmos.color = (map [x, y] == 1) ?  
     Color.black : Color.clear; 
                    Vector3 pos = new Vector3  
     (-width / 2 + x + 0.5f, 0,  
     -height / 2 + y + 0.5f); 
                    Gizmos.DrawCube (pos, Vector3.one); 
                } 
            } 
        } 
    } 
} 
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