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Abstract 

Antimicrobial peptides (AMPs) have been a major research focus due to their potential to 

combat a variety of human pathogens. Our laboratory has identified several novel peptides 

that display significant antifungal activity. The effectiveness of these peptides in vitro has 

been promising; however, it has been shown that physiological concentrations of various 

salts along with other conditions are inhibitory to peptide activity. To further explore the 

inhibitory effects of these salts, a new assay was developed whereby we can observe the 

effects of various salts on the peptide killing activity. For our studies, we employed several 

clinical isolates of Candida species to evaluate the killing activity of peptides in the presence 

of physiologically relevant salts at varying concentrations. By adding the salts individually, 

we are able to examine the inhibitory effect of each. When compared to other assays, the 

new assay requires less time and resources by allowing us to test the AMPs under 

numerous conditions simultaneously. After testing the AMPs, we determined that CaCh, 

MgS04, NaCl, and KCI are all inhibitory to peptide killing activity at varying degrees. In 

addition, we discovered that circularization or hexanoic acid modification of the peptide 

bypasses the inhibition of salts. Our long term goal is to modify the peptides in a way that 

will allow for their use in vivo. 
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Introduction 

Due to the increase in the rate of resistance to current infection therapeutics, a search for 

alternative treatment methods has been ongoing. One area that is being investigated is the use of 

antimicrobial peptides. Antimicrobial peptides have been found in numerous organisms such as 

plants, animals, and bacteria. In each of these, AMPs act as the first line of defense against 

infectious microorganisms including bacteria (both Gram positive an? Gram negative), fungi, 

and some viruses [1]. 

The great potential for these peptides is attributed to the mechanism by which they 

directly confront the microbes. AMPs kill their targets by permeabilizing the plasma membrane 

or by disrupting the membrane. Due to the anionic character of the microbial membrane, the 

positively charged peptide is attracted. These electrostatic forces and the hydrophobic attractions 

between the amino acids and the phospholipid bilayer's core, which is composed of fatty acid 

tails, allow the peptide and the membrane to bind to each other. The addition of the peptides 

causes stress to build in the membrane. After a threshold value of stress is reached, the 

membrane cannot effectively act as a barrier. An aqueous pore forms, and ions and peptides 

travel through this pore [2]. From this point, the exact mechanism of action is unknown [3], as it 

is possible that the permeabilization of the membrane may kill the cells via loss of membrane 

integrity; alternatively, the peptide may enter the cell and target an essential pathway for growth. 

The fact that peptides attack the membranes is significant for numerous reasons. Animal 

and plant cells have overall neutrally charged membranes, as compared to bacteria or fungi that 

have negatively charged membranes. This difference promotes the ability of the peptides for 

distinguishing between the pathogen and the host's cells. This selective toxicity is essential for 

AMPs to be considered for therapeutic use [4]. In addition, by attacking such an essential aspect 
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of the cell morphology in a pathogen, the AMPs make it difficult for the pathogen to develop 

resistance; for resistance to form, the pathogen's membrane composition would have to be 

changed, likely resulting in negative alterations to other natural processes carried by the cell 

membrane [5]. 

In previous studies, AMP efficacy has been shown in vitro. Because of this, AMP-based 

medications have been synthesized and are in varying stages of FDA approval. AMPs have been 

utilized in clinical trials to treat a wide variety of infections such as diabetic foot ulcers 

(Pexiganan), ulcerative oral mucositis (lseganan), catheter-related bloodstream infections 

(Omiganan), acne (MBI 594AN and XMP.629), and oral candidiasis (Histatin variants). While 

each drug produces varying results, utilizing AMPs as alternative treatment methods for 

infectious diseases seems promising and is rapidly moving forward to the commercial market 

[6]. 

Candida is a genus of fungus found as a part of the natural flora in humans, with C. 

albicans being the most common. While normally it causes no problems, changes in 

physiological conditions of the host can lead to candidiasis (Candida infection). Healthy 

individuals who are infected with Candida species tend to have mild infections, but immuno­

compromised patients exhibit more severe infections. There are two commonly observed types 

of Candida infections: mucocutaneous superficial infections such as oral thrush, vaginitis, and 

systematic Candida infections. Out of these Candida infections, systemic Candida infections are 

the most severe. Out of the 72.8 cases of systemic Candida infections per million per year, the 

mortality rate ranges from 33% to 40%. In addition, systemic Candida infections account for 

$1.8 billion in yearly healthcare costs in the United States alone. These staggering statistics 

relay the need for new, effective antifungal treatment [7]. 
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To pursue AMPs as possible therapeutics for fungal treatment, the KM (Kumar­

McNabb) peptides were developed. These peptides were designed based on preliminary studies 

that sought to define the minimally active region ofhistatin 5, a naturally occurring AMP found 

in the human oral cavity (personal discussions with Dr. McNabb). The KM peptide series has 

been shown to have effective fungicidal activity against Candida species. Of the KM peptides, 

KM-12 is being used as a prototype for future development due to its high fungicidal activity. In 

addition to its efficacy, KM-12 is a small peptide that would be economically feasible to produce 

in mass. In order to test the limitations ofKM-12, a new assay was needed. The current method 

used in the McNabb/Kumar labs for evaluating KM-12 is relatively inefficient, expensive, and 

time consuming. Moreover, these approaches are not readily adaptable to a high-throughput 

strategy for evaluation. Because of this, a new experimental method was created that utilizes a 

24-well plate and the radial diffusion assay. By using this new process, multiple conditions could 

be evaluated simultaneously while using minimal resources. This assay will be used in the future 

to study additional KM-12 derivatives that resolve some of the physiological barriers that 

prevent the use of AMPs for in vivo therapy. In this study, the affects of salinity on AMPs was 

observed. 

One of the barriers to using AMPs for therapeutic purposes in vivo has been the 

sensitivity of most AMPs to the presence of cationic salts. At physiological salt concentrations, 

AMPs typically have reduced antimicrobial activity [8]. As the McNabb/Kumar labs continue to 

develop AMPs, one goal is to find a solution to the "salt problem". Thus, the radial diffusion 

assay offers a relatively simple approach to determining the salt-sensitivity of a given peptide 

derivative. Through use of this assay, the researchers were able to evaluate the affects of cationic 

salts on KM-12 peptide derivatives and identify two candidates that resist salt inhibition. 
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Discussion of Antimicrobial Peptides 

Benefits and drawbacks to using AMPs as therapeutic agents: 

AMPs provide themselves as intriguing potential therapeutic agents against numerous 

pathogenic diseases due to their numerous benefits; however, before these peptides can be used, 

the drawbacks must be understood and overcome. The arguments for the use of AMPs as novel 

therapeutic options include their rapid killing activity, additional benefits not seen in antibiotic 

use, wide range of targets, and mode of action that limits the possibility of resistance formation. 

In spite of these benefits, as of2012, no AMPs had been approved by the Food and Drug 

Administration as antimicrobial therapeutics [8, 9, 10]. 

One of the largest benefits for AMP therapy is the short time needed for the microbial 

killing to conclude. This killing often occurs in seconds to minutes after initial contact with the 

membrane of pathogens. To put this into perspective, the immune response usually takes minutes 

to hours to elicit microbial death [8, 11 ]. On top of the shorter killing time, AMPs limit 

resistance formation by pathogens by directly targeting the plasma membrane. In the small 

number of cases where resistance to AMPs develops, AMP efficacy is only lowered, not nullified 

[9]. By decreasing the time needed to eliminate pathogens and limiting the possibilities for 

resistance formation to occur, AMPs increase a patient's ability to fight off infection and 

decreases the time of sickness. 

Another exciting aspect of AMP therapy is that many AMPs are able to perform more 

functions than antibiotics. Often, steroids are given to patients who are taking antibiotics to 

reduce the inflammatory response. With the use of some AMPs, this additional medication is 

unnecessary; the inflammatory response is lessened by AMPs during their release [8]. Another 
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drawback to antibiotics is seen in microbial resistance methods. Some strains of bacteria are able 

to produce biofilms and some microbes produce persister cells, variants of a microbe that are 

highly resistant to antibiotics and are found in most microbial populations; both of these forms of 

resistance decrease antibiotic efficacy. While antibiotics often prove ineffective in these cases, 

some AMPs are able to reduce bacterial numbers in spite ofbiofilms formation [9] and AMPs 

can target and kill persister cells [8]. As researchers look for alternatives to antibiotics, AMPs 

present themselves as great candidates by performing the job of antibiotics better. 

Despite the aforementioned benefits, there are drawbacks to using AMPs in humans that 

prevent their immediate administration. This first drawback stems from a benefit. Because AMPs 

can target a wide range of cells, there is the potential for host toxicity. While this is true for some 

peptides, most show targeting preference for prokaryotic cell membranes and fungal cell walls, 

not eukaryotic cell membranes. With humans or other animals as the intended hosts, this 

drawback can be easily evaded by avoiding peptides that stray from the normal preference [8]. 

In order for AMPs to be effective, they must be able to survive and function in an 

environment that would mimic one seen in vivo. This aspect has presented some obstacles for 

AMP therapy. For instance, variance in pH or salinity can change the secondary structure of 

some AMPs. With the altered shapes come differences in function which may limit AMP 

efficacy. Because researchers cannot alter the pH or salt content of a host's body, they must 

produce AMPs that resist conformational changes in these conditions. Another environmental 

obstacle is the presence of pro teases. Certain invading organisms may produce proteases that 

target and degrade AMPs before their effects can take place. In order to combat this, researchers 

can implement the "D" form of amino acids into peptides in place of the natural "L" form. After 

these changes are made, the stereospecific proteases will be unable to cleave the AMPs. Also, 
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degradation can be avoided by adding terminal end modifications to AMPs. These modifications 

stabilize AMP structure by preventing protease binding. Finally, proteases can be completely 

bypassed by delivering AMPs directly to the plasma membranes of pathogens. Through the use 

of manufactured vehicles, AMP exposure to the environment surrounding a pathogen would be 

limited until it successfully binds to the microbial membrane [8]. While all of these options for 

decreasing protease action would work theoretically, further experimentation needs to be done to 

make these theories realities. 

As with most things in life, money is a major consideration in AMP synthesis. 

Financially, peptides can be a poor option if one is not careful, because peptide synthesis is 

expensive, increasing in cost with each additional amino acid residue. In order for AMPs to be 

viable options, limiting the length of the peptides will be necessary. This would require 

researchers to determine the smallest possible fragment of an AMP that continues to exhibit its 

antimicrobial actions [8]. Before the benefits of AMPs may be utilized, all of these drawbacks 

must be addressed. A deep understanding of peptide structure and how it affects activity and 

killing mechanism must be gained by researchers [10]. 

AMP interaction with the host immune system: 

In general, the immune system is a complex system, providing multiple different 

pathways for combating pathogens. This fact is also seen in the various ways the immune system 

synthesizes, releases, and stores AMPs. Usually, AMPs are synthesized constitutively 

(continually being produced until a signal halts transcription) [12] . Under this type of control, 

AMPs may be released into the surrounding area as they are synthesized, resulting in a non­

receptor-mediated response. In other words, no invading pathogen is needed to cause peptide 
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release; they are always present and work to stop an infection before it starts by killing any 

targets with which they come into contact [8]. Other peptides are synthesized under inducible 

transcriptional control where certain molecules that signify microbial presence, such as 

lipopolysaccharides and lipoteichoic acid, initiate AMP synthesis and release, resulting in 

microbial targeting and death [12]. In some circumstances, AMPs are stored as granules in 

neutrophils and other phagocytic cells; the AMPs are released after the immune cells detect 

pathogens. This allows a very concentrated, rapid response to the presence of a specific microbe. 

It has also been noted that motile cell bring some AMPs to the site of an infection, increasing 

their concentration [8, 11 ]. 

All ofthe methods of peptide release above play a role in innate immunity; however, 

AMPs can also act in the adaptive immune response. In this case, AMP release is dictated by the 

presence of specific microbial molecules, as with the inducible peptides. Once release is 

stimulated, however, the AMPs act as effectors, stimulating BandT cells and directing them to 

target the invading microbes; the peptides themselves do not attack the pathogens. Through the 

AMPs' role in the adaptive immune response, the host's immune system is trained to better 

target the pathogen that stimulated AMP release [12]. 

Surprisingly, there are even more ways that AMPs interact with the immune system. 

AMPs have been shown to affect the expression of molecules responsible for the host's defense 

system. By increasing the amount of defensins, proteins that are released to aid in host defense, 

AMPs cause more neutrophils to accumulate in the infected tissue. For example, the release of 

Dermaseptin, an AMP, increases the amounts of reactive oxygen species, molecules that are 

destructive to pathogens and signal the host's immune system to act. Additionally, chemokines 
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and their receptors, integrins, and transcriptional factors are examples of molecules whose 

production is altered based on the presence of specific AMPs [ 11]. 

AMP structure: 

Natural AMPs are normally less than 50 amino acid residues in length, making them 

fairly small. Generally, they have an overall positive charge and are amphipathic, having both 

hydrophobic and hydrophilic regions. These qualities lead to their unique mode of action [1 0]. 

Cross-species examination reveals few occurrences of duplicate AMP amino acid residue 

sequences, even in closely related species, indicating the great diversity of AMPs. Secondary 

structures are often used to categorize AMPs into four groups for classification: alpha-helical, 

beta-sheet, extended, and loop AMPs [11]. 

Alpha-helical AMPs do not fold until they enter plasma membranes and are thus 

unstructured in aqueous solutions. Once they insert themselves into a membrane, helices form 

[10]. Beta-sheet AMPs contain at least two beta-strands stabilized by disulfide bonds [8]. 

Extended AMPs have no regular secondary structure but usually have an overrepresentation of 

one or more amino acid. These extended peptides are not known for their membrane disruption. 

Instead, extended AMPs insert themselves through the membrane and exact an attack on 

metabolic machinery within the cells. Loop AMPs form a loop using one disulfide bridge. They 

have few amino acid residues, are easy to synthesize in a laboratory, and resist proteolytic 

degradation. Because of these qualities, many researchers hold high hopes for the use of loop 

AMPs as therapeutic agents [10, 11]. As expected in biological agents, there are AMPs that do 

not fit into one of the above categories and some that contain two different structural 
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components. It is also important to note that these structures may only be observed if the AMPs 

are interacting with the membrane [8]. 

AMP mode of action: 

By evaluating the structure of AMPs (discussed above), their functions can be understood 

and explained. The most common mode of action for AMPs is disruption of the microbial 

membrane, leading to permeabilization, ion leakage (possibly leakage of larger molecules), and 

microbial death. It has been observed that, in some cases, AMPs enter through the pores they 

form and accumulate around intracellular targets. The exact mode of action past permeabilization 

and accumulation is unknown and a source of immense interest [ 11]. Cell death is caused by the 

consequences of permeabilizing the membrane. Because ions are now free to enter or exit the 

microbe as they please, the cell's primary method of creating energy through chemiosmosis is 

disabled. Due to the loss of osmotic control, water enters the cell leading to swelling and lysis 

[12]. 

The driving forces that allow membrane-peptide interaction are electrostatic attraction 

and hydrophobic interactions [8]. As stated before, AMPs are cationic, giving them an overall 

positive charge. Microbial membranes, conversely, are anionic. Because of the charge difference, 

AMPs are able to accumulate on the membrane. After a critical peptide-to-lipid ratio is met, 

hydrophobic segments of the peptides interact with the lipid tails within the membrane while the 

hydrophobic portions of the peptides interact with the lipid polar head groups. During this 

process, AMP-AMP interactions occur as well. All of these actions lead to the formation of a 

pore [13]. 
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There are various pore structure models. Under the barrel-stave model, the AMPs form a 

transmembrane pore by bundling together. For this pore to form, the AMPs must assemble either 

on the plasma membrane once they have attached or within the membrane. The end result is 

multiple AMPs folded in such a way that the hydrophobic regions interact with the lipids within 

the membrane core and the hydrophilic residues of one AMP interact with the hydrophilic 

residues on the adjacent AMPs. The pore that is formed is oriented perpendicularly to the 

membrane. Ions and other molecules are able to freely enter the cell by utilizing the channel in 

the center of the pore, bypassing the plasma membrane [ 11]. In the case of alpha-helical AMPs, 

pore formation must occur on the plasma membrane surface because their hydrophilic portions 

are exposed, hindering single peptides from entering the hydrophobic core of the plasma 

membrane. The helices align parallel to the membrane and then are inserted perpendicularly [8]. 

Another proposed pore formation model is the carpet model. In this model, the peptides 

cause the membrane to form micelles, with the peptides surrounding the lipid spheres [8]. To 

form these micelles, highly and thoroughly positive AMPs (cannot be zwitterionic unless very 

slightly so) coat the cell surface until a proper lipid-to-peptide ratio is reached. The membrane 

will then begin to fold into itself, forming channels with the peptide-coated polar head groups 

facing the center of the pore (these pores are known as toroidal pores). As the membrane 

continues to invaginate in multiple locations, micelles form. No specific peptide structure is 

needed in this model. The only requirements are that the peptides are highly positive and 

sufficiently hydrophilic [11]. This model differs from the barrel-stave model in pore shape. In the 

barrel-stave model, the pores have the lipids all in the same orientation, parallel to the peptide 

channel. In this model, the lipids bend such that those closest to the pore range in orientation 
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from perpendicular to parallel to the pore. This toroidal pore resembles the shape of a doughnut 

[8]. 

While most AMPs cause cell death through sustained pore formation, there are some 

AMPs that induce cell death in ways that are very different. As mentioned earlier, extended 

AMPs do not form pores; these AMPs insert themselves completely through the membrane, 

allowing the cytoplasmic end of the peptide to interact with cellular machinery of the microbe. 

This interaction leads to decrease metabolic efficacy and microbial death [ 1 0]. 

It has been noted that some AMPs form pores, but then disassemble them. In the sinking­

raft model, pore formation occurs but is not sustained and does not directly cause cell death. 

Instead, some AMPs translocate across the membrane through the pore and relieve the imposed 

membrane stress, resulting in pore closure. From there, the translocated AMPs complete their 

metabolic attack, killing the microbe [13]. 

Some AMPs do not even interact with the cytoplasmic side of the membrane. Instead, 

these AMPs may host their attack on the plasma membrane proteins. The bacterial membrane is 

associated with one third of the proteins in a bacterial cell. Many of these proteins provide 

functions essential to the bacterial cell such as producing A TP, moving nutrients across the 

membrane, creating a proton gradient, and communicating with surrounding cells. Some AMPs 

disrupt these activities, causing cell death [8]. 

AMP selectivity: 

While many AMPs have a wide range of microbial targets, some affect only specific 

types of microbes; further, all broadly targeting AMPs do not have the same target range. As one 

may guess, this fact is largely due to AMP-membrane interactions. It was previously stated that 
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AMPs generally target prokaryotic cells preferentially over eukaryotic cells. This discrimination 

is made possible by the distinctive components of prokaryotic and eukaryotic cell membranes. 

Bacteria contain lipopolysaccharides or teichoic acids depending on the Gram determination, 

making the bacterial membrane negatively charged [11]. Animal cell membranes, on the other 

hand, lack these molecules, using phosphatidyl choline and sphingomyelin polar head groups on 

the outer leaflet and cholesterol as the imbedded support. These molecules cause the membrane 

to have a zwitterionic character and lead to a more positively-charged outer leaflet for the 

eukaryotic cells [12]. Membrane potential also affects the peptides' ability to bind. Eukaryotes 

have a less negative membrane potential than bacteria. As one may assume, a larger negative 

potential better attracts the cationic peptides [11]. When cationic AMPs interact with bacterial 

and animal cells, many more peptides are needed to induce eukaryotic cell death because there is 

less electrostatic attraction [12]. 

There is one type of eukaryotic cells that is targeted by AMPs: tumor cells. In tumor 

cells, membrane symmetry is lost, leading to the homogenization of charges that were previously 

separated by leaflet location. With lipid translocation occurring in tumor cells, a more negative 

charge is seen on the outer membrane leaflet. Also, normal eukaryotic cells can be targeted by 

negatively charged or hydrophobic AMPs; these AMPs lose selectivity and thus target both 

eukaryotic and prokaryotic cells. This is favorable in the sense that it leads to a wider range of 

targets for the AMPs. However, eukaryotic cells are more at risk as well [11]. 

It may seem surprising that AMPs are able to target viruses, but many viruses are 

surrounded by a membrane envelope obtained from the host cell. AMPs attack the viral envelope 

in the same way they target the plasma membranes of prokaryotes. By integrating themselves 

into the membrane, AMPs destabilize it, leading to lysis of the viral particle [8]. Another more 
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surprising method of enveloped virus targeting is when the peptides prevent virus particles from 

binding with the membrane of the host. This inhibition can be accomplished by occupation of the 

host cell's receptors or by destabilization ofthe viral envelope [8, 11]. For the non-enveloped 

viruses, AMP attack occurs when the virus enters the host cell. The AMPs can alter the gene 

expression within the host, leading to either increased production of host proteins that combat the 

virus or to a decrease in viral gene expression. Transitioning to antifungal AMPs, one would 

assume these eukaryotic cells are safe from AMP targeting. However, some AMPs will target the 

chitin in the fungal cell wall, allowing them to attach [8]. 

Pathogen resistance to AMPs: 

While microbial resistance to AMP attack is rare, it can occur. Usually resistance is 

caused by membrane surface modifications or proteases that degrade AMPs. Increased 

membrane fluidity allows AMPs to more effectively enter cells. To resist this entry, some cells 

will produce proteins that alter the membrane lipids, resulting in more lipid-lipid interaction and 

decreased membrane fluidity. Alpha-helical peptides are more inhibited than other AMPs by this 

microbial modification [ 11]. Another type of modification leads to change in the charge of the 

pathogen by either shielding the membrane charges or changing the membrane potential. In 

addition, some microbes have inducible genes that are activated to reduce AMP efficacy. The 

proteins formed by these genes lead to membrane molecule modification, substitution, or 

acylation in some cases. Some pathogens produce proteolytic enzymes that degrade AMPs once 

they enter the cytoplasm. Efflux pumps can be synthesized to remove AMPs from the cell's 

cytoplasm as well. Since some AMPs alter metabolic pathways, microbes can modify the 

intracellular targets ofthe AMPs to gain AMP resistance. The formation ofbiofilms also 
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provides pathogens with protection from AMPs. While these resistance methods are effective in 

delaying the actions of AMPs, it is uncommon for cell death to be completely avoided [8]. 

Synthesizing AMPs: 

As stated previously, the end goal for researchers is the production of AMPs that can be 

used as antimicrobial therapeutic agents. Currently, AMPs are best suited for external application 

only because it is difficult for the peptides to pass through the gastrointestinal tract and the blood 

to arrive at the infected tissues. Some alternative dosing methods that are being considered are 

injections, delivery vehicles for peptide transport, or mixing the peptides with some substance, 

such as a muco-adhesive polymer or an acrylic bone cement, so the peptides are not rapidly 

cleared by the body [11]. While possible, these methods will require more research and pose 

problems when considering cost. Another alternative (and the method behind this research) is 

synthesizing peptides that can withstand and overcome biological obstacles. 

In de novo synthesis, AMPs are looked upon favorably for many reasons. With many 

AMPs occurring naturally, researchers have numerous templates from which to build; they can 

alter these templates, creating peptides that have higher efficacy or better protease resistance than 

the originals. Being chains of amino acids, AMPs are easily modified. With this ability, 

researchers can change AMP structure and observe the outcomes of the changes without much 

trouble. Also, synthesis can occur either on the bench-top or in recombinant systems. Having 

these two modes of synthesis, researchers are afforded greater flexibility in AMP synthesis. 

Bench top chemical synthesis allows for the incorporation of unnatural amino acids. AMP­

producing recombinant systems have already been established in plants and allow for savings in 
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time and money. These systems also allow for easy addition of post-translational modifications, 

such as methylation, amidation, phosphorylation, or glycosylation [8]. 

In synthesizing AMPs, multiple factors must be considered in order to produce peptides 

that are effective in killing pathogens and have reasonable costs. First of all, for peptides to even 

bind to the targeted cells, they must be water soluble. Without dissolving, pathogen killing is 

impossible. The second consideration is AMP length. In order to from structures with 

hydrophobic and hydrophilic faces, the smallest a peptide can be is 7 to 8 amino acid residues 

long. To form the alpha-helices for the barrel-stave model, 22 residues are needed while only 8 

are needed if forming beta-sheets. While length is a major concern for cost, decreasing length too 

much can severely decrease AMP efficacy. Thirdly, overall charge is a concern that must be 

considered as well. Because these peptides are to be used as therapeutic agents for humans, an 

overall cationic character must be created; otherwise, selectivity between eukaryotic and 

prokaryotic cells is lost. As a fourth consideration, the hydrophobicity must be controlled in 

order to specify targets. Some pathogens are better targeted at specific ranges of hydrophobicity. 

Changing this quality of the peptide changes its target range. It is important to note that while 

hydrophobicity is important, amphipathicity has a larger affect on membrane binding and should 

be given preference when designing peptides. Lastly, adding disulfide bonds or cross linkages 

can change the antimicrobial effect [8]. 
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Methods and Materials 

Strains, growth medium, and culturing of organisms: 

The Candida species and strains used in this study were C. albicans SC5314, C. albicans 

ATCC90028, C. albicans ATCC36082, C. krusei ATCC6258, C. tropical is A TCC750, and C. 

glabrata A TCC90030. All strains were obtained from the American Type Culture Collection 

(ATCC; Manassas, VA). The strains were grown and maintained on Sabouraud Dextrose agar 

plates at 30°C. For growth in liquid culture, the strains were grown in Yeast extract-Peptone­

Dextrose (YPD) medium at 37°C overnight. After overnight growth in liquid culture, the 

concentration of cells in each culture was determined by hemocytometer counts to determine the 

number of cells/mi. 

Radial diffusion assay: 

Following growth of the appropriate Candida strain as outlined above, the cells were 

diluted to a concentration of 1 X 106 cells/ml in a 1% (wt/vol) agarose solution prepared in 

10 mM phosphate buffer (pH 7.4). A volume of300 J..LL of the cell/agarose solution was 

deposited in each well of a 24-well plate. Once the cell/agarose solution solidified, a 2 mm 

diameter hole was punched into the cell/agarose layer for each well. A 4 J..LL aliquot of a 50 J..LM 

peptide solution prepared in 10 mM sodium phosphate buffer at a pH of7.4 was deposited into 

the hole. The plate was incubated for 2 hr at 3 7°C, and the peptide diffused into the agarose and 

killed the fungal cells. Following this incubation, each well was overlaid with 300 J!L of a 1% 

agarose/6% Sabouraud Dextrose solution to provide nutrients to the surviving fungal cells to 

grow. The plate was subsequently incubated overnight at 37°C. For a control that exhibited no 

killing of fungal cells, 1 OmM sodium phosphate buffer at a pH of 7.4 was deposited into the hole 
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instead ofthe peptide. The cells killed by the peptide would leave a circular clearing in the 

middle ofthe surviving fungal cells that grew overnight. The diameters of the clear kill zones 

were compared to determine the relative killing ability of a specific peptide in the varying 

conditions. 

Optimization of the radial diffusion assay: 

The radial diffusion assay was optimized by examining several relevant parameters that 

would allow reproducible results. For these studies, C. albicans SC5314 was used to assess 

various parameters. First, the minimum amount of cell/agarose solution needed was evaluated 

using the K.M-12 peptide with both 300 J.!L and 600 J.!L of the cell/agarose solution deposited 

into the wells of the 24-well plate. It was found that 300 J.!L of the cell/agarose solution was 

adequate for the assay. Second, the optimal width of the hole in the agarose was examined by 

using holes of 1 mm and 2 mm diameter in the cell/agarose layer, and the 2 mm hole was found 

to give optimal results. Third, the optimal concentration of the peptide was examined. Initially, 

the peptides KM-10, K.M-12, and WD-16 were prepared at concentrations of3 J.!M, 6 JlM, 

12 J.!M, 25 J.!M, 50 J.!M, and 100 JlM, and a 3 JlL aliquot of each peptide was deposited into the 

hole of the cell/agarose solution. For a second series of experiments, both the concentration of 

the peptides and the volume of each peptide were altered. The peptides KM-1 0, KM-12, and 

K.M-33 were prepared at concentrations of25 J.!M, 50 JlM, and 75 JlM; 3 J.!L of the 75 J.!M 

concentration, 4 JlL of the 50 f.!M concentration, 4 f.!L of the 25 f.!M concentration, or 5 f.!L of the 

25 f.!M concentration of each peptide was deposited into a hole of the celVagarose layer. 
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Effect of cationic salts on peptide activity: 

To test the effects of cationic salts on fungicidal activity of peptides, C. albicans SC5314 

was used as the test strain along with the indicated peptide, either KM-12 or KM-33. The radial 

diffusion assay was performed as outlined above except the indicated salts were added to the 

agarose/cell solution at the indicated final concentration prior to addition to the 24-well plate. 

The following salts were evaluated: NaCl, ZnCh, CaCh,KCl, and MgS04. 

Testing KM-12 derivatives in fetal bovine serum: 

To test the effectiveness ofKM-12 derivatives in fetal bovine serum (FBS), KM-12, KM-

18, and KM-34 were tested against C. albicans in varying concentrations ofFBS. The 

cell/agarose solution was mixed with FBS to make cell/FBS/agarose solutions containing 0%, 

5%, 10%, 20%, and 40% FBS. A volume of 300 JlL of each solution was deposited into wells, 

and 4 JlL of 50 JlM KM-12, KM-18, or KM-34 were placed into the appropriate wells and the 

radial diffusion assay was performed as outlined above. 

Results and Discussion 

Optimization of the radial diffusion assay: 

For the radial diffusion assay to work reproducibly, a variety of parameters needed to be 

standardized. Thus, the initial goal in developing the assay was to evaluate several parameters of 

the assay and establish standardized conditions. It was determined that 300 JlL of the cell/agarose 

solution added to each well of the 24-well plate provided a kill zone that was larger and more 

distinct than that observed with 600 JlL of agarose/cell solution (data not shown). In wells that 

received 600 JlL of the cell/agarose solution, small colonies of C. albicans SC5314 were seen 
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growing within the kill zone. This generated an undesirable haziness within the kill zone that 

made comparative analysis more difficult. It is presumed that increasing the volume of the 

cell/agarose solution from 300 J.!L to 600 J.!L increased the number of fungal cells present per 

well; however, the amount of peptide deposited was kept the same. Moreover, the volume of the 

hole created in the agarose was deeper for the 600 J.!L volume while the dispensed peptide 

remained constant. This resulted in an uneven diffusion of the peptide causing cell growth within 

the kill zone. Thus, the volume of cell/agarose solution and the peptide solution were adjusted 

such that the diffusion from the hole in the agarose was evenly distributed from the top to 

bottom. 

By altering the width of the hole within the agarose, the volume capacity changed. 

Having a hole that was too narrow would allow only a small volume of peptide to diffuse into the 

cell/agarose layer resulting in smaller kill zones. In contrast, a hole with a diameter that is too 

wide would result in the uneven diffusion of the peptide throughout the agarose. When 

comparing the results of 1 mm versus 2 mm diameter holes, both produced the same diameter 

kill zones. However, the kill zones with a the 1 mm hole were hazy, indicating some cell growth. 

It was found that when the same volume of peptide solution was added to the I mm versus 2 mm 

hole, some of the peptide solution settled on top of the cell/agarose layer with the 1 mm hole. 

This produced an uneven lateral diffusion of the peptide, resulting in differential killing ofthe 

fungal cells through the agarose. To remedy this, the volume of the dispensed peptide solution 

could be reduced for the 1 mm hole; however, the size of the kill zone produced would be also 

smaller. Since the kill zone produced by 4 J.!L of the peptide solution is optimal, the 2 mm 

diameter hole was chosen since it balanced volume and kill zone area optimally. 

22 



Once the optimum volume of cell/agarose and the peptide volume were established, the 

next goal was to determine the optimum concentration of peptide that would give an appropriate 

kill zone. Initially, three peptides (KM-10, KM-12, and WD-16) with varying efficiencies of 

fungicidal activity were tested at different concentrations. WD-16 is the functional component of 

histatin, a human AMP, and thus functions as a wild type. As shown in Figure 1, KM-12 

displayed the most efficient fungicidal activity as indicated by the diameter of the kill zone. 

KM-10 showed an intermediate level ofkilling and WD-16 showed very limited killing activity. 

By testing these peptides at different concentrations, the concentration that produced an optimum 

kill zone was established. For all of the peptides, the diameters ofthe kill zones decreased as the 

concentration ofthe peptide solution decreased. The fungicidal activity ofKM-12, KM-10, and 

WD-16 were not observed at or below concentrations of3J.!M, l2J.!M, and 50J.!M respectively. 

The wild type WD-16 was ineffective when compared to the KM peptides. When comparing the 

kill zones ofKM-12 and KM-10, a concentration of25 to 50 J.!M could be used to obtain an 

obvious kill zone for these peptides. 
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Figure 1: Optimum 
concentration of peptide. 
The indicated peptides 

were evaluated using the 
radial diffusion assay with 
increasing peptide 
concentrations as shown. 
C. albicans SC5314 was 
used as the test strain for 
this assay. 



In a second round of optimizing the peptide, KM-33 was added to the peptides tested. To 

increase the size and thus improve the visibility of the kill zone at lower concentrations of 

peptide, we increased the volume of peptide solution deposited. As expected, the kill zone 

increased in size as the concentration and volume of the peptide solution increased (Fig. 2). In 

considering the amount of peptide solution dispensed, it was concluded that a volume of 4 j..tL of 

peptide solution provided an optimum kill zone. When comparing the 25 j..tM versus 50 j..tM 

concentration, the 50 j..tM gave a slightly larger kill zone. Thus, it was determined that the 50 j..tM 

concentration would be preferable since the larger kill zone would offer a broader effective range 

important in later experiments. Thus, the future experiments were conducted using 4 j..tL of a 

50 !lM peptide. 

Concentration of Peptide 

Figure 2: Optimum volume/concentration of 
peptide. The indicated peptides were evaluated 
using the radial diffusion assay with increasing 
peptide concentrations as shown. The volume of 
peptide added to each well was also optimized as 
shown. C. albicans SC5314 was used as the test 
strain for this assay. 

Effects of cationic salts on peptide activity: 

To examine the salt-sensitivity ·of AMPs, the radial diffusion assay was used with several 

individual physiological salts to determine the contribution of each to inhibitory activity. Five 

different salts were tested for this series of experiments: NaCl, CaClz, MgS04, KCl, and ZnC}z. 

NaCl, CaCh, MgS04, and KCl were chosen as relevant physiological salts that are present in 

significant concentrations in the human body. ZnCh was chosen because it has been speculated 

that ZnClz increases AMPs' killing activity via an unknown mechanism [14]. In the initial 
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experiment, the effect ofNaCl of on the fungicidal activity ofKM-12 and KM-33 was evaluated. 

As shown in Figure 3, both KM-12 and KM-33 were completely inhibited at 60 mM NaCl or 

higher. 

Figure 3: Effect of 
NaCI on AMP activity. 
Increasing 
concentrations ofNaCI 
were added to the radial 
diffusion assay as 
indicated. The wells 
contained 10 mM 
phosphate buffer pH 7.4 
(control) or 50 ~M of 
the indicated peptide 
in the same buffer. 

To evaluate the effect of salts, different concentrations ofNaCl, CaCh, MgS04, and KCl 

were evaluated using the radial diffusion assay. Since RPMI-1640 is used for the growth of 

multiple human cell lines, the concentration of salts in this medium represents a good estimate of 

physiologic salt concentrations. Thus, the concentrations evaluated were selected based on their 

respective concentrations in RPMI-1640 medium. Because ZnCh is not found in the RPMI-

1640, the ZnCh concentration was arbitrarily chosen. 

As shown in Figure 4, significant inhibition of the KM-12 fungicidal activity was 

observed at 50 mM NaCl, consistent with the data shown in Figure 3. For CaCh, activity was 

greatly diminished at 0.8 mM; however substantial activity was retained in the presence of 0.4 

mM CaCh. For MgS04, KM-12 activity was completely inhibited at 16 mM; however, the 

activity remained noteworthy at 0.8 mM. Not surprisingly, KCl and NaCl inhibition were very 

similar. By comparing inhibition of fungicidal activity caused by these four salts, one can 
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evaluate the relative detriment the salts have on KM-12 activity. In order of increasing 

detriment, there is KCl < NaCl < MgS04 < CaCh. Thus, divalent cations had a stronger 

inhibitory effect than monovalent cations on fungicidal activity. 

Figure 4: Effect of various 
cationic salts on the activity of 
KM-12. Candida albicans 
SC5314 was exposed to KM-12 
in the presence of the indicated 
salts at the concentrations shown 
using the radial diffusion assay as 
described in the Materials and 
Methods. The peptide was used at 

50 J..lM concentration. 

15 rnM 20 rnM 30 rnM 45 rnM 50 rnM 

Previous studies have suggested that zinc enhances the fungicidal activity of some AMPs. 

To determine how zinc influences the activity ofKM -12, the radial diffusion assay was 

conducted with KM-12 in the presence of varying concentrations ofZnCh. It was found that 

1 mM ZnClz inhibited the activity ofKM-12; however, at the 4 mM concentration, the zinc was 

fungicidal in the absence ofKM-12 (Fig. 5). 

Control 

ZnCI2 

OmM lmM 2mM 4mM 

Figure 5: Effect of ZnCh on the activity of 
KM-12. Candida albicans SC53 14 was 
exposed to KM-12 in the presence of the 
indicated concentrations of ZnCh shown using 
the radial diffusion assay as described in the 
Materials and Methods. The peptide was used 
at 50 J..lM concentration. Control contains 
only 10 mM phosphate buffer pH 7.4. 
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Specificity of the KM peptides: 

One of the problems with the current antifungal therapeutics is the lack of broad range 

specificity (having numerous pathogens a therapeutic specifically targets). For example, some 

non-albicans species of Candida are not sensitive to fluconazole, a common antifungal 

therapeutic. For this reason, the specificity ofKM-12 and its derivative, KM-34, were evaluated 

with non-albicans species known to be resistant to fluconazole. As shown in Figure 6, C. 

tropicalis and C. krusei are resistant to fluconazole, but are sensitive to killing by the KM-12 and 

KM-34 peptides. These results suggest that KM-12 and KM-34 have a broader specificity of 

fungicidal activity than fluconazole. 

c. c. c. 

KM-12 

KM-34 

Fluconazole 

Control 

Figure 6: Specificity of the KM peptides 
with fluconazole-resistant strains of 
Candida. The peptides KM-12 and KM-34 
were evaluated for fungicidal activity against 
C. albicans SC5314, C. krusei ATCC6258, 
and C. tropicalis ATCC750. The peptides 
were used at 50 J.!M concentration. For 

comparison, 50 11M fluconazole was 
evaluated in the same assay as indicated. 
Control contains only 1 0 mM phosphate 
buffer pH 7 .4. 

To further examine the range of fungicidal activity, the killing activity ofKM-12 and 

KM-5 was evaluated against C. albicans clinical isolates and selected non-albicans species of 

Candida. KM-12 was found to effectively kill all species evaluated, while KM-5 killed the 

majority, but it was less effective against C. albicans ATCC90028 and C. glabrata ATCC90030 

(Fig. 7). Based on these results, KM-12, the prototype KM peptide, can effectively kill multiple 

strains of Candida. This fact makes KM-12 or a derivative an attractive candidate for further 
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development. C. albicans ATCC36082 was slightly more resistant to KM-12 than the other 

isolates, producing a smaller, hazier kill zone. 

c. c. c. c. c. c. 
albicans tropicalis glabrata 

KM-12 

KM-5 

Figure 7: Specificity of the KM peptides with various strains of Candida. The 
peptides KM-12 and KM-5 were evaluated for fungicidal activity against C. albicans 
SC5314, C. albicans ATCC90028, C. albicans ATCC36082, C. krusei ATCC6258, C. 
tropicalis ATCC750, and C. glabrata ATCC90030 as indicated. The peptides were used 
at 50 J.!M concentration. Control contains only 10 mM phosphate buffer pH 7.4. 

Evaluation of KM peptide derivatives for resistance to cationic salts: 

The studies shown in Figure 3 indicate that the KM peptides are sensitive to an ionic 

environment. To examine whether other derivatives of the KM peptides may have resistance to 

these salts, an experiment was conducted in which KM-18 and KM-34 were incubated with 

C. albicans SC5314 in the presence of physiological NaCl concentrations (150 mM). As a 

control peptide, the wild-type WD-16 was used since it was known to be highly salt sensitive. 

As shown in Figure 8, KM-18 and KM-34 were uninhibited by the presence of 150 mM NaCI. 

KM-18 and KM-34 are both derivatives ofKM-12 that were synthesized to maintain fungicidal 

activity at physiological concentrations of salts. KM -18 is a circularized peptide containing the 

active sequence YKRKF which is found in KM-12. KM-34 contains the identical five amino 

acid sequence with theN-terminal covalent addition of a 6-carbon hexanoic acid. This suggests 
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that circularization ancllor the addition of a hydrophobic tail to the peptide may improve 

fungicidal activity in the presence of cationic salts. This observation will be further explored by 

the McNabb/Kumar lab in the future as well as the effect that other N-terminal peptide 

modifications may have on fungicidal activity. 

Control 

150mM 

NaCI 

Km-18 Km-34 WD-16 

KM peptide activity in blood serum: 

Figure 8: KM peptide derivatives that display 
resistance to cationic salts. The peptides KM-18 and 
KM-34 were evaluated for fungicidal activity against C. 

albicans SC5314 at 150 mM NaCl as indicated. The 
peptides were used at 50 11M concentration. Control 
contains the indicated peptide and no salt added. 

To evaluate the effect of blood serum on the activity of the KM peptides, fetal bovine 

serum (FBS) was used to mimic conditions in the human blood stream. For the three peptides 

evaluated, KM-12, KM-34, and KM-18, as the concentration ofFBS increased, the fungicidal 

activity decreased (Fig. 9). There are three possible reasons for the decrease in activity: 1) the 

cationic salts in the serum inhibited peptide activity; 2) the peptides were strongly bound to 

serum proteins such as albumin; or 3) proteases in the serum destroyed the peptides. It was 

already shown that KM-34 and KM-18 were not significantly affected by physiological salt 

concentrations (Fig. 8), suggesting that one or both of the other two reasons are likely to be 

involved in the loss of activity. The KM peptides will have to be further modified to combat 

these inhibitory effects; however, the radial diffusion assay offers an excellent platform for 

evaluating new KM peptide derivatives as the development of these novel fungicidal peptides 

progresses. 
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Concentration ofFBS 
5% 10% 2.0% 

Conclusions 

Figure 9: KM peptide activity in 
serum. The peptides KM-12, KM-
34, and KM-18 were evaluated for 
fungicidal activity against C. 
albicans SC5314 in fetal bovine 
serum (FBS) at the concentrations 
indicated. The peptides were used at 
50 J.!M concentration. 

In summary, development of the radial diffusion assay has allowed us to develop a new 

AMP screening assay that is adaptable to high-throughput screening and is cost-effective for the 

initial evaluation of new peptides. The utility of this assay was demonstrated by evaluating the 

sensitivity of various Candida species to the KM peptides developed in a collaborative project 

between the laboratories of Dr. David McNabb and Dr. Suresh Kumar (personal interview with 

Dr. McNabb). It was found that the fungicidal response observed with the radial diffusion assay 

was the same as observed with the standard minimum inhibitory concentration (MIC) assays 

(Akkam and McNabb, unpublished results). The four common cationic salts found in the RPMI-

1640 (NaCl, CaCh, MgS04, and KCl) inhibited the fungicidal activity of most KM peptides. 

Moreover, in spite of previous findings, ZnClz seemed to inhibit the killing activity of the KM 

peptides at low concentrations while killing fungal cells alone at higher concentrations. In 

response to these inhibitory factors, we identified two KM peptide modifications that may 

alleviate some of the inhibitory effects of cationic salts, namely circularization (KM -18) or 
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hexanoic acid modification (KM-34) of the peptide. Further modification may be required before 

the KM peptides are stable and functional in vivo. 

It is worth noting that the mechanism by which the KM peptides kill fungal cells is 

unknown. The radial diffusion assay offers an approach to identifying the genetic pathways 

involved in fungicidal activity of the peptides. The McNabb lab has a library of Saccharomyces 

cerevisiae mutants containing null mutations in every nonessential gene in the genome (>5000 

different mutants). The radial diffusion assay presents a viable approach to screening through 

the mutants to identify pathways that affect KM peptide sensitivity. Once the pathways are 

identified inS. cerevisiae, the orthologous genes in C. albicans can be knocked out to determine 

whether the same pathways confer sensitivity or resistance in that organism. Using this genetic 

approach, the mechanism by which the KM peptides kill fungi could be elucidated. 
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