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The main goal of this paper is t o survey the issues an application de"d oper would have to resolve in 

producing a system that would be ablP to spread its computa tiona l load across several computers con

nected by a network . D('fori> t.lii s c ;1.11 I H' d1 J111· . a li rwl i ii! i " ofn < 1 ic111 l.11 d ist ri I 11 1k d ;111d p;u allel computing 

is necessary. 
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1.1 Distributed computing 

Distributed computing is generally defiue<l as a type of computing in which different components and 

objects comprising an application can he located on diffff<'nt compukrs connectPd t.o a nPtwork [6]. Thus, 

for example, a word prncc::-s i11!!, applica tion rnay ( '011s i ~I () r a.11 t ~dit.nr c< •D1pu1rf•11t l\'.'l1di11g m1 one c.omputer, 

spell-checker componeut residing on a second comp11tpr and a t.lwsaun1s ro111porw11t. rnsiding on a third 

computer. It is possible that. thesP- different rnmput.ers may be running rliff,.rent operating systems. Since 

different components may be written b:v different <lev<'lopers or groups nf developers, all the parties must 

must agree upon a certain standard for inter-object corurnuuication. Ouc of the most common standards 

in the industry is CO RB A (section 3.3.3). which will be discussed later. 

1.2 Parallel computing 

. 
Parallel computing is the use of more than oue CPU to execute a program . [6] There are some differences 

in programming such systems as compared t.o "regular" or "sequential'' programming. In sequential 

programming there is usually one process (program) working on a problem. \~'hen a problem is solved in 

parallel, there are mult,iplc pnJr•·:;scs worki 11µ, ou i i . .-\ f; i11 a11~· ('t •m l 11 11< ·d dl'ort . t.lw part.icipa.nts need to 

communicate with each ot.h"'" Often. 'lnn11 · sort. of ma11 e:rg1·11H•111 is ;1ls (l r<'q11i n'rl . ProJ!;ramming parallel 

systems also provides a challenge bccaww most pro~ramnwrs li;wp hccn trained to think sequentially. 

For example, if there a.re two tables of 11 u111 bers that need to hr. multipli('d, tlu· most common approach 

that comes to mind is iterating through every element of t he f.able. HoweYcr, in the parallel paradigm, 

iteration is not needed, since onP would have a host of CPUs, each a<lrli11g one element, thus, in the 

combined effort, adding all of them at once. Overall, particular problems and solutions depend on the 

type of the parallel algorithm, problem at hand, and the hardware available. 

There is a widely recognized classification of parallel machines, known a..., Flynn's taxonomy, that dis-
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tinguishes between thn~c l.ypcs of ardtil r-ctur('s: Sll\l D. MI MD. ;md l\l JSD. Jt is 1101. clit!icult to generalize 

the concept and apply it to f.he algorithms and, since this paper is dealing mon· with software methods 

than hardware, the following sections will do so. 

1.2.1 SIMD 

SIMD stands for "Single Instruction, Multiple Data'' . It, is one of the most common uses for parallel 

computing, mainly due to the ease with with which such algorithm can be distributed across multiple 

processors. In this model all of the processors are running the same set of instructions, but they are 

supplied with different data. For example, if the task at hand is to calculat.e GPA for a group of students, 

the same algorithm is applied to all of them. Thus each processor is using the same program, but is 

accessing data for different students. Clearly, this way the task will be performed much faster. However, 

not all tasks can be P<\ralleli:r,<.'d as easily :-1s I hr· mH ~ 1111·111 io1u·d ah11w. 

1.2.2 MIMD 

MIMD stands for "Multiple Instruct.iou, l\1ultiple Data". T his µaratligm <"an he easily compared to 

the manufacturing of an automobile. Ilefore the final product can be assembled, different parts (wheels, 

engine, interior) must be made. For each part , a different production algorithm and different set of source 

materials is used. Although this methocl may seem more flexible than SIMD, there are certain drawbacks. 

One such drawback is that the whole process needs to be orchestrated hy some sort of manager. For 

example, the engine cannot be assembled until pistons have been made. In addition to that, some tasks 

are completed faster than others, thus crc<tting the possibility that some processors are left with nothing 

to do. 
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1.2.3 MISD 

MISD stands for "Multiple Instruction, Single Data" . There is no commonly known implementation of 

this paradigm, but it is not hard to imagine one. For example, if one has a signal recording with a lot 

of interference and wishes to apply difforent noise reduction techniques to it, he or she can use multiple 

processors running different sets of instructions, yet operating on the same data. 

2 Reasons for distributing applications across the networks 

There are many computer applications tli;)f ~impl.v \\·<mid l;1k1• :rn 11 na('('1•ptably lung time to produce 

results if done sequentially and due to that, haw~ to bC' dmw iu JHll <.1.lli:I. E,\ ;.i,urples of 1;uch applications are 

image processing, code breaking, calculat.iom; with large unmhers, complex mathematical models. Tradi

tionally, parallel proce~sing was the domain of large and extrcrncl:v E'xpe11sive supercomputers. However, 

as faster and better networks developed, a.n alternative approach wa.-; realized: to combine multiple PC's 

connected by a network into a virtual supercomputer. In addition t.o increal->e<l network speed, the work

stations themselves are becoming mor<' and more powerful (for example, according to research at UC 

Berkeley [1] a top end 1994 workstation is roughly one-third the performance of a Cray C90 processor) 

As the Beowulf project has proved [14) [15), a cluster of such machines can provide a much cheaper 

alternative to supercomputers. Although Beowulf dusters have shown their massive computing power, 

this power depends largely on the fact that all of the nodes in the clnst.t•r arf' of the same architecture, 

run the same type of software (operating ~.vst.em , applications, Pt.c.) and arc connected by a high-speed 

local network. 

Another reason for developing distributed applicat.iom; is IJw fact that pron~ssurs are getting much 

faster, but disks are improving mostly in capacity, not pcrformancP [l] . If this trend continues the 
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increases in processor performance will yield little improvement for the eud-user, since most of the time 

will be spent waiting for the 1/0. With t.hc availability of fast networks a different alternative develops: 

a potential existence of a huge memory pool on the network which can be accessed faster than local disk. 

A brief survey of the usage of the workstations and PC's would reveal that most of the time their 

CPUs are idling or using only a small perrr.•11tage of tlwir c~-rl<>s for ro111p11t.atio11s of any sort. Clearly, 

a great abundance of rcsl1nrces could be harvester! if Hwsc cydcs <'011JJ he utili-.ed . Two main problems 

opposing this idea are the difficulty of (or, rather, delays in) communicat.ion between the hosts and the 

heterogeneity of the computers and their :>ystems. Some groups are already working on finding solutions 

to these problems. Programmers of UC Ilerkele~1 's SETI@home arc working on a project that would 

combine the power of the PCs connected to the Internet and use their idle time (that is usually spent 

on screen-savers) to look for patterns in the data collected by SETis Arecibo radio telescope [18]. The 

investigators of SETI@home hope to get at least fifty thousand PCs involved and, according to them, 

that would rival all current SETI projects. This project should be very successful in utilizing the idle 

resources available throughout the Int.ernet, but it is rather inflexible in several ways. It is strictly a 

client-server application with clients dc:>igued for oue part.icular number-crunching task, where the server 

simply provides the data upon the request. of the client. and has no influe11ce whatsoever on the scheduling 

of the client tasks. 

Yet another (and on a much larger scale) approach wa.<; takcu h.r a group from the University of 

Virginia. The goal of the Legion Proj11ct. f 4] (5] is to develop t.he architl'"t.urc t,hat, would combine multiple 

computers of various types across the Internet into a virtual world-wide computer that is relatively 

transparent1 to the user. 

It is evident that the resources of the networked computers arc there to be harvested by the developers. 

1 appears as a single machine, rather than n combination of many 
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To take advantage of those resources, programmers will have t.o know an<l understand the issues related 

to the environment and havl' t.h<· appropri ate tools t.o ma11ipulat.1~ i t . 

3 Existing models and tools 

3.1 Models 

There are several models for distributing processes across several hosts connected via a network or net

works. These paradigms are not mutually exclusive, hut rather intersecting and some are the evolved 

versions of others. 

3.1.1 Client-server 

The client-server mod~ is one of the oldest models for distributed processing. In this model an application 

consists of a group of cooperating proc('SS('s, called S('rvers, that offer services to the users, called clients 

[17]. The client and server machine:; normall.v a.11 ru11 t.hc :-.n111t• opcr:i Liuµ. sp;t.c-'lll. A machine may run a 

single process, or it may nm many di<•nts. ma11y i:;crvc•rs, or a mixt.un• of I he two. The communication 

between clients and servers is usually based on a simple, connectionless rc•qm·st/rcply protocol. The client 

sends a request message to the server , a:-;king for some sPrvice (e.g. fiml an Pntry in the database). The 

server does the work and returns the <lata requested or an error code indicating why the work could not 

be performed. 

3.1.2 Networks of workstations (NOWs) and clusters 

Networks of workstations model is a relatively general idea of utilizing m;ources of the workstations on 

a network. The workstations may run the same or different opcrat,i1111; systems and can be of the same 
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or different architectures. Also, the functions of the nodes of these networks may be diverse with some 

systems being used for storage, others as computatioual drones, and so on. 

Clusters are usually a more specific case of NOW. In the case of clust.ers, the nodes are confined to 

a local-area network segment consisting entirely of the cluster nodes. Most of the nodes have no direct 

connection with the outside world, all necessary interface provided by a limited number of "entry-point" 

stations. All the nodes are of the same architecture and run copies of the same operating system. Most 

often, some sort of shared disk space exists, and sometimes a network shared memory model is used. 

3.1.3 Metacomputing 

A metasystem is a collection of geographicall.v scparn.ted n !so111-c:Ps (peopk\. cmu1rnt.<'rs , instruments, da

tabases) connected by a high speed network. A md.asyste111 is dist.inguisllC'd from a simple collection 

of computers by a software layer, often c-allcd mi<ldleware, which transforms a collection of independent 

resources into a single, coherent, virtual machine. This machine should uc as simple to use as the machine 

on the user's desktop, and should allow easy collaboration between r.ollcagues located anywhere in the 

world (7). 

3.2 Communication protocols 

It is clearly understood that if processes are to be distributed across the network or networks, there must 

exist some mechanism that would allow data to be pa."sed from one computer connected to the network 

to another. A range of communication protocols is already in place, wit.h new protocols2 continuing to 

emerge. 

2 An agreed-upon format for t.r l\11srnitt i11g data het.w('cn t.wr, d evin•R l(j l 
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3.2.1 OSI - Open Systems Interconnection 

Developed by ISO (International Standards Organization), OSI is a standard for worldwide communica-

tions that defines a networking framework for implementing protocols in seven layers. Control is passed 

from one layer to the next, starting at. t.he application layer in one station, proceeding to the bottom 

layer, over the channel3 to the next station and back up the hierarchy [6] . Although at one time most 

vendors agreed to support OSI, it wa::; too loosely defined, and a..:; a result currently very few of the 

communication protocols ar<' fully OSI-compliant. How<'V<'r. majority of t.hc protocols have most of the 

OSI functionality, often combining sP-vcral OSI layers int.o one. 

OSI consists of seven layers: application layer, prescntatio11 layer, session layer, transport layer, 

network layer, data link layer and a pl1ysical layer. Tlw physical layer manages putting data onto the 

network media (like copper or optical cable) and taking the data off. The data link layer is responsible 

. 
for physically passing data from one uode to another. The network layer routes data from one node to 

another. The transport layer is rnsponsihle for end-to-end integrity of data transmission. The session layer 

is responsible for establishing and maintaining communication channds (in practice, this layer is often 

combined with the transport layer). The presentation layer manages data representation conversions. 

Finally, the topmost layer, application layer, is responsible for program-to-program communication. 

3.2.2 IP - Internet Protocol 

The Internet Protocol is designed for use in i11terco1111ertcd systems of packct.-switclu!d computer commu-

nication networks. The Internet Protocol provides for transmitting blocks of data called datagrams (or 

packets) from sources to desti nations, when-~ sources and destinations arc hosts identified by fixed length 

addresses. The Internet protocol also provides for fragmentation and reassembly of long datagrams, if 

3 a communication path between two computers or devices 
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necessary, for transmission through "small packet" networks [11] . 

The Internet Protocol is specifically limited in scope to provide the functions necessary to deliver 

a datagram from a source to a destination over an interconnected system of networks. There are no 

mechanisms to augment. end- to-encl daUt rel iability. flow control or sequencing [11 ]. IP is called on by 

host-to-host protocols in an Internet environment. It calls on local network protocols to carry the Internet 

datagram to the next gateway or destinat.ion host . 

3.2.3 TCP - Transmission Contrnl Protocol 

Most often IP is used in conjunction with TCP, creating the well-known TCP /IP suite. 

TCP is a connection-oriented , end-to-end reliable protocol designed to fit into a layered hierarchy of 

protocols which support multi-network applications. TCP provides for reliable inter-process communi

cation between pairs of processes in host computers attached to distinct. but interconnected computer 

communication networks. Very few assumptions are made as to t he reliability of the communication pro

tocols below the TCP layer. TCP assumes it can obtain a simple, potentially unreliable datagram service 

from the lower level protocols. In principk, the TCP should he ahlc lo operate a.hove a wide spectrum 

of communication systems ranging from hard-wired comwctions to p;1rkrt-swit.ched or circuit-switched 

networks. (12). 

TCP /IP suite usually includes a wide range of additional prot.orols: Us1~r Dat.agram Protocol (UDP), 

Simple Network Management Protocol (SNM P) , Internet Control Message Protocol (ICMP) , Address 

Resolution and Reverse Address Resolution Protocols (ARP / RARP) , TELNET Protocol, File Transfer 

Protocol (FTP), Simple Mail Transfer P rotocol (SMTP), Hypertext Transfer Protocol (HTTP), Domain 

Name Service (DNS), Remote Login protocol (RLOGIN) , Dynamic Host Configuration P rotocol (DHCP), 

Post Office Protocol (POP), Internet Message Access Protocol (IMAP). I will briefly describe some of 
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the protocols relevant to the topic. 

3.2.4 UDP - User Datagram Protocol 

The User Datagram Protocol is defined to make available a datagram mode of packet-switched computer 

communication in the environment of an interconnected set of computf'r networks. This protocol assumes 

that the Internet Protocol is used as the underlying protocol. UDP provides a procedure for application 

programs to send messages to other programs with a minimum of protocol mechanism. The protocol is 

transaction oriented, and delivery and duplicate protection are not guaranteed (10]. 

3.2.5 XTP - Xpress Transport Protocol 

TCP /IP suite has held up rather well through the changes in the underlying networking infrastructures. 

However, there were several efforts to examine th<' service:,; TCP /1 P fails tn provide and to research . 
the possibilities of bettering transport sc•rvices. One of the rcsult-R w:-i:-; the development of the XTP 

protocol (although it has already been incorporated into some proprietary protocol stacks and several 

experimental suites, it has not becu standardized by either ANSI or IEEE) . In comparison to TCP, 

XTP boasts better How and rate contrnl and superior error-recovery model. XTP also allows for reliable 

multicast support (TCP fails to provide multicasting altogether), message priority and scheduling, quality 

of service negotiations, selective retransmission, and several other feat.un)s not available in TCP [16). 

3.2.6 ATM - Asynchronous Transfer Mode 

Asynchronous Transfer Mode is emerging as the primary net.working technology for next-generation, 

multi-media communication. ATM protocols are designed to handlf: time critical data (video, audio) in 

addition to more conventional data communicat ions. ATM protocols arc c.apable of providing a homoge-

neous network for all traffir. typ<'s. The same prot.ocob am used regardless of whether the application is 
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to carry telephone conversation, video or computer traffic over local area networks (LANs), metropolitan 

area networks (MANs), or wide area networks (WANs). 

3.3 Tools 

As one cannot build a car without tools, one also cannot build a computer application without them. 

This is even more true for distributed applications. Most of the communication protocols described in 

the previous sections come with some sort of function library that. can be used by the developer, yet this 

is clearly not enough. To develop distributed applications onP. needs tools that treat different processes 

as a conglomerate, while allowing for i11dividua.l control and accf'ss at t hf' sam<' time. These tools need 

to provide not only data sharing capabilities hut also various managerial tasks. 

3.3.1 PVM - Parallel Virtual Machine 

The PYM software provides a unified framework within which parallel programs can be developed in an 

efficient and straightforward manner using existing hardware. PVM enables a collection of heterogeneous 

computer systems to be viewed as a single parallel virtual machine. PVM transparently handles all 

message routing, data conversion, and task scheduling across a network of incompatible computer archi

tectures (3] . More precisely, PVM allows for the following: user-configured host pool 4 , translucent access 

4 the application's computational tasks exccut,e on a set of machines that. are selected by the user for a given run of the 

PVM program which can also be altered by adding and deleting machines during oµcrnt.ion 
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to hardware 5 , process-based computation 6 , explicit message-passing model 7 , heterogeneity support 8 , 

and multiprocessor support 9 (3]. 

PVM was developed mainly by the PVM group at the University of Tennessee and Oak Ridge l\'ational 

Laboratory. 

3.3.2 MPI - Message Passing Interface 

Message passing is a relatively simple paradigm that allows different. processes to exchange messages. 

This paradigm is used widely on certain classes of parallel machineR, especially those with distributed 

memory. Over the last ten years, many applications have been cast into this paradigm, each vendor 

implementing its own variant of message passing. To enable creation of port.able applications that utilize 

the message passing concept, it was necessary to develop some sort of widely accepted standard. Through 

the collaboration of about 60 people from 40 organizations (mainly from the US and Europe) the Message 

Passing Interface standard (8] emerged. 

The goals of the MPI forum were: t.o design an application programming interface10, to allow efficient 

communication, to allow for implementations that can be use<i in a hf'terogeneous environment, to allow 

convenient C and Fortran 77 bindings for the interface, to define an int.erfo ce that can be implemented 

5 application programs either may view 1.hl' ha rd ware environment as an a l.t r ibu tcll':;s rnlJPc.l ion of processing elements 

or may choose to exploit the capabilities of specific machines in the host pool by poHit.ioning certain computational tasks 

on the most appropriate computers 
6 the unit of parallelism is a task, an independent sequr.ntial thread of control that is capable of computation and 

communication , with a possibility of multiµle tas ks executing on a single processor 
7 collections of computational tasks, each perform ing a part of an application's work load cooperate by explicitly sending 

and receiving messages to one another, with message size limited only by the amount of available memory 
8 PV M supports heterogeneity in terms of madrincs, networks, applications and data representations 
9PVM uses the native message-passing facilities on multiprocessors to take advantage of t he underlying hardware 

10 AP! - a set of routines, protocols, and tools for building software applications [6j. 
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on many vendors' platforms, to allow for language-independent semantics, a.nd to allow thread-safety 11 . 

In the design process forum members assumed a reliable communication interface, meaning that user 

does not have to cope wit h communication failures - such failures are dealt with by the underlying 

communication subsystem (such as TCP ). The forum also tried not to devia te too much from the existing 

message passing and parallel processing models (such as PYM). The resulting standard includes point-

to-point communication12 , collective opC'rations13 , process groups14 , communication contexts15 , process 

topologies16, bindings for Fortran 77 and C and environmental management and inquiry. 

3.3.3 CORBA - Common Object Request Broker Architecture 

Developed by Object Management Group, CORBA is an architecture that enables pieces of programs, 

called objects, to communicate with one another regardless of what programming language they were 

written in or what operating system they are running on. 

The main components of CORBA are object. systems, Object Rcq1wst, Broken; (ORBs) and clients. 

An object system includes entities known as objects. An object is an identifiable, encapsulated entity 

that provides one or more services that. can be requested by a client. Client. is an entity that wishes to 

perform an operation on the object. ORB is responsible for all of the mechanisms required to find the 

object, to prepare the object implementation for the request , and to communicate the data making up 

the request. T he interface the client sees is completely independent of where the object is located or 

what programming language it is implemented in. To make this possible, objects need to describe their 

11 thread - a part of a program that can execute independent ly of other parts [6]. 
12in this case, communication method in which there is one sender and one nx:eivcr 
13operations involving more than one sender and /or receiver 
14ordered collections of processes, each with ra nk [8] 
15contexts provide the a bility to have a separate safe "universe" of message passing bf't.ween the two groups, such that a 

send in a local group is always a receive in the remote group, and vice versa 
16define a special mapping of t he ranks in a group 

14 



interfaces. These definitions of interfaces cau be defined in two ways. They can be defined statically in 

an Interface Definit ion Language. This language defines the types of objects according to the operations 

that may be performed on them and the parameters to those operations. Alternatively, or in addition, 

interfaces can be added to an Interface Repository service; this service represents t he components of an 

interface as objects, permitting runtime access to these components. 19) 

4 Related issues 

4.1 Security 

In the modern age of the Internet , computer security has become one of the most important issues in 

the industry. This issue becomes even more important if one wishes to develop applications that would 

function across the networks. Moreover , in the paradigms such as metarnmputing, the resources that 

are combined into the metacomputcr often belong to different people ancl organizations. The owner of 

each host would want to be ensured of the security of his system. In addition, different hosts may need 

different levels of security. 

When dealing with network security, t.wo main issues arise. One is the problem of authenticating users 

(or clients) that should have access to a given computer or service. The other issue deals with protecting 

the data when it is traveling on the network. 

There are several mechanism availahle for authenticating users. The simplest one is shipped with any 

Unix or Windows NT operating system. It is based on a user databa.<;e that keeps a user's name and 

his/her password. When the user is trying to log in, t.he system will ask for a password and compare 

it with the one stored in the database. It. is also conceivable that any giveu user database may become 

compromised. To avoid damages that could he inflicted, the passwords in the database are usually stored 

15 

~. , · ~Y-Htcmt r...oTHAM uEnARi 
.. l..t\CHtT A i'.'.AP I li> T UNtva~nY 



in an encrypted form. Moreover, the encryption scheme used is one-way, meaning that once the password 

is encrypted, even the system does not know how to decrypt it. In this case, the password supplied by 

the user is also encrypted before the comparison is made. 

The issue becomes a little more complicated when the same user (or set. of users) wishes to have access 

to more than one system. The simplest solution would be to duplicate the user database and distribute 

it to multiple computers. However, this method is very cumbersome and inflexible in many ways. For 

example, a user currently logged into one system changes his/her password. That. means that all copies 

of this database on other systems need to be updated by some mechanism. The problem becomes even 

more complicated when multiple systems do not have exactly the same user set. Finally, this solution 

becomes unacceptable if one wishes to make the network transparent to the user. 

Network Information Service (NIS) may provide a solution to this issue. NIS provides generic database 

access facilities that can be used to distribute information to multiple hosts on the network. It is based on 

RPC17 and consists of a server, a client-side library and several administrative tools. NIS keeps database 

information in so-called maps containing key-value pairs. Maps arc stored on a central host running the 

NIS server , from which clients may retrieve the information through various RPC calls. [13] 

Another authentication mechanism is Kerberos, originally designed at MIT. Kerberos is a trusted 

third-party authentication service. It is trusted in the sense that ear.h of its clients believes Kerberos' 

judgment of the identity of each of its other clients to be a.c.curat.e. Kerh<!ros consists of a Key Distribution 

Center (KDC) that runs on a physically secure computer somcwh<>rn on the network and a library of 

subroutines that. are used by distributed applications which want t.o aut.henticate their users. Kerberos 

generates private keys which are given t.o the authenticated clients. Using these keys, Kerberos' clients 

can convince each other of their identity [2] . 

17 remote procedure call - a protocol that allows a program on one computer to cxl.>cut.e a program on a server computer[6] 
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It may also be necessary to encrypt the data traveling across the network. This can be done in various 

ways. One possible scenario is to utilize a proprietary protocol, but this mctho<l defeats the purpose of 

combining the resources of systems possibly belonging to different organizations. Another solution is to 

use some publicly known encryption ~r.hcme. This scheme must b<> constructed in such a way that the 

knowledge of how to implement the scheme would not. allow one to decrypt a message without proper 

authorization. A rather elegant method of encryption, called public-key (or assymetric) encryption was 

put forth in 1976 to solve the a.bove-me11tioned problem. The method is based on the following paradigm: 

the encryption algorithm is known to everyo11e and each party involVf~<l creates a pair of keys. Either key 

can be used with the known encryption algorithm. One of the keys is the encryption key and it is made 

public. The other key, known only to the owner, is the decryption key. Thus, for each person A, there 

is a an encryption function encrypt A() that is known to everyone, and a decryption function decrypt A() 

that is known only to l'\.. 

Each pair of the keys is constructed so that it has a special property. For any message m, 

decrypt A (encrypt A ( m)) = m 

Thus, applying the private decryption key to a message t.hat has already heen encrypted with the public 

encryption key recovers the original message. It is this particular property that makes public/private 

pairs work. It is also important that knowledge of the public encryption key does not make it easy to 

find the corresponding decryption key. 

Additional functionality of public-key encryption is the ability to create digit.al signatures. A digital 

signature allows the recipient of a message to verify the identity of the sender and to ascertain that the 

contents of the message have not. been altered. To enable this , the public/private pair needs to have an 

additional property 

r,ncrypt A (decrypt A ( m)) = m 
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Thus, if A wishes to send a signed, verifiable message m to D, A needs to apply A's private decryption 

key, and then B's public decryption key to the message, resulting in enCl'yptn(decryptA (m)). This, now, 

can be sent to B, who will apply his/her private decryption key, resulting in 

deC?·ypt B (encrypt n (decrypt A ( m))) = decrypt A ( m) 

Applying A's public encryption key will recover the message: 

encrypt A (decrypt A ( m)) = m 

Since only A could have known A's private decryption key, the message must have been truly from A 

and not corrupted. 

4.2 Scheduling and load balancing 

One of the most interesting problems in the distributed computing is that of optimal scheduling of 

processes. Since in the distributed environment, applications have more than one host available for 

computation, it become.s necessary t.o det<mnine where and when to mu a certain process. Scheduling 

can be done either statically or dynamically. 

In static scheduling the assignment of processes to the hosts/processors happens before the execution 

begins. This method, although very simple, has multiple drawbacks. To achieve any sort of efficiency, the 

application's behavior needs to be predicted before the application itself is started. Although, knowing 

the logic of the program, it may be possible to derive some prediction. However, such prediction would 

not be able to take into account any changes in processing environment, that. were brought about by other 

processes occupying the system. That is, it is virtually impossible to predict. the processor load due to 

other applications. 

In dynamic scheduling processes arc (re)distributed during the cxl'cution of the application. The 
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process of transferring processes from heavily loaded processors to lighter loaded processors is called load 

balancing. For this scheme to work, several things need to be known to the scheduler/load balancer: 

• how loaded are the processors available to the application 

• how much effort will it take to transfer the application to a different host/processor 

• how loaded is the current processor 

Load balancing operations may be centralized in a single processor or distributed among all processing 

elements . Also, load balancing can be either sender or receiver init.iatc<l. In the sender initiated scheme 

a local host makes a decision as to where a new task is to be executed and sends it there. At the target 

processor a queue of scheduled jobs may be formed. In the receiver initiated scheme a local host keeps 

the new task until a processing element reports ready to accept a new job. Load balancing techniques 

are also classified into static and adaptive. In a static model t he scheduling decisions do not depend on 

the current state of the system, but rather on the average behavior and some predetermined scheme (like 

round-robin or random). Adaptive load balancers, on the other hand, react to changes in the system 

state. It is obvious that an adaptive balancer/scheduler is much more complex to implement and will 

itself produce a heavier load on the system. 

5 Developing and experimenting with distributed systems 

After having discussed various issues a programmer or software cngi11eer may have to deal with when 

building a distributed system, it may be helpful to see more concrf'te examples of such dealings. This 

section will provide the reader with some of such examples. It will describe development of the general

purpose distributed system. Sections 5.1 and 5.2 will explore the feasibility of distributing such system 
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across the non-local networks (i.e. networks with relatively long delay t imes and possibly high error rates) 

anrl section 5.3 will focus on design of this system. 

5.1 Study of the MPI point-to-point communication methods 

Since communication between the processes is one of the most importa11t aspect.sofa distributed system, 

it would be wise to see how certain communication tools act, under various network conditions. 

For this experiment, MPI was chose11 as a message passing mechanism. Originally, it was intended to 

compare the performance of MPI under two different transport protocols · TCP and XTP. That would 

identify which network protocol is better suited for MPI. However , due to resource and time limitat ions 

the experiment was limited only to the TCP suite and did not allow a11y comparison with XTP. Despite 

that, it yielded some interesting results that may be helpful not just in the areas of distributed computing, 

but also in the general data communications research. 

The experiment consisted of sending messages of varied length back and forth using MPI point

to-point send mechanisms between two computers. The computers involved were two SPARC-stations 

connected by an ATM network. The pathways were set up so all the cells traveling between station one 

and station two were routed through A<Itech's AX/4000 test equipment. AX/4000 was used to introduce 

errors and delays into the cell stream, thus simulating various net.work condit ions (ranging from local 

area networks to metropolitan area networks to wide area networks with various degrees of errors.) The 

round-trip time of the message was measured and the rate of message paHsing was calculated by dividing 

the size of the message by the round-trip time. It must be noted that tlw rate found in this experiment is 

not the network throughput because there is additional overhead added by the MPI message processing 

mechanism. 

Some results of this experiment are shown in figures 1, 2 and 3. Figure 1 shows the relation between 
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Figure 1: Rate of passing small (up to lMB) messages over a LAN-type network. 

the rate of message passing to the size of the message for the networks with characteristics similar to . 
t hose of local area network (like a university campus network). The measurements were made for the 

delay levels of 0 millisecond and 1 millisecond with small and large 1:rror rates. It can be seen from the 

graph that, as the error rate rises, the difference between the 0 millisecond network and 1 millisecond 

network (otherwise significant) seizes t.o ~~xist. It also shows that a slower network with lower error rate 

behaves better than a fast network with a higher error rate. Figure 2 shows the similar dataset for the 

metropolitan area type of networks (a net.work connecting campuses in different areas of the metropolis.) 

Results here are similar - as the error rate iucreases, the difference between slow and fast networks seizes 

t.o exist. 

Figure 3 shows the situation described by graph one from a slightly different perspective. Here the 

round-trip time of the message is plotted against the size of the message for different delay end error rates. 

Each point on the plot represents a message. At the lower error rates the time values are densely packed 
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into a line. However, as the error rate increases the time values become more diverse . This provides an 

insight not only into any particular message passing mechanism, but also into any network and protocol 

benchmarking. Normally, a network is benchmarked by providing a throughput vs. message size graph for 

any given network, protocol, delay or error rate. Throughput is a ratio of message size to the round-trip 

time. Normally, the round-trip time is considered a definite value for any given condition, thus producing 

a single-line throughput graph. The data represented in figure 3 shows that t.he round-trip time should be 

considered more like a probability function rather than any definite value. As the experiment has shown, 

as the error rate increases, the distribution becomes less dense. This approach would be very helpful in 

the evaluation of different protocols. For example, when one tries to compare XTP and TCP protocols, 

the throughput graph would not be sufficient, since it would not disclose error handling capabilities of 

the protocol as well as a probability function graph would (i.e. a protocol with a superior error-reduction 

techniques would boast a much dense probability distribution for time values.) 

Although the XTP implementation was not available to make the comparisons, it is possible to 

hypothesize that in the environments with increased error rates, XTP would be a better transport agent 

that TCP because XTP is supposed to have superior error-handling capabilities. 

The source code of the program used to conduct this experiment can be viewed at 

http://ava.obu. edu/-morozov/VSEP98/sr c/commtest .c 

5.2 Some results in distributing processes over "slow" networks 

Most of the reasons given for distribut<>d computing were given in th<' light. of fast local networks. Cur

rently, even with the advances in the technology, the speed of Internet has much room for improvement. 

Thus, one could argue that relatively slow transmissiou speeds of the Internet would outweigh the benefits 

of distributing tasks to mult iple hosts. T his is certainly true of t he tasks where communication is a rela-
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tively large component compared to computation. However, it is conceivable that some applications do 

not require much communication. These applications should not suffer much from lower network speeds. 

To test this idea, a simple experiment was set up. In this experiment. a computational problem was 

distributed to four processors separated by a "non-fast" network and the performance was tested and 

compared to the performance of a program executing the same problem i11 sequential mode. 

The computational problem consisted of squaring large tables of integers. Distributed implementa

tion consisted of computing elements a11<l a "manager" process that divided the problem into several 

parts and assigned them to the computing elements. The program was written in C using the MPICH 

implementation of MPI. Four workstations running Solaris operating system were available. These were 

connected by an ATM network through the AX/4000 test equipment. AX/4000 was used to simulate 

various network environments by introducing delays and errors into the traffic. 

Results of this experiment are shown in figure 4. It is clearly seen that there is virtually no difference 

between the times it takes to compute the problem on the network with 10 millisecond delays or 180 

millisecond delays. It is true that in this case the distributed method is not. very much faster than the 

sequential, but that is mainly due to the fact that only 4 nodes were available for processing. 

The source code of the program used in the experiment is available at.: 

http://ava.obu.edu/-morozov/VSEP98/src/mat-star.c 

5.3 Developing a general-purpose distributed system 

Having shown that distributed processing over the Internet is possible and even beneficial, one might 

want the reader to get a feel of what it would be like to develop a distributed application. This section 

will briefly discuss the design of a general-purpose system distributed over multiple computers. 
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Figure 4: Comparison of sequential and parallel table multiplicatiou utilizing networks of various speed. 

5.3.1 System requirements 

Before proceeding to the design, it is nec<!ssa.ry to state the features one would want this system to have. 

Firstly, the model should be general enough to be adapted to a multitude of problems. This could be 

understood in two ways: 

• construct t.he model as a superclass from which multiple systems could be derived, each system 

dealing with an individual problem 

• generalize even further and design a system that would alone deal with varied tasks 

As often happens, the increased generality could come at a cost of lesser efficiency. These trade-offs could 

be studied once prototypes of different models are implemented. 

Secondly, the system should not be limited to a Local Area Network, but must be able to distribute 

across MANs, WANs, or Internet. This means that the system should be fault tolerant. It also implies 
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the possibility of resources being owned by different entities, thus creating the need for a security model 

that provides sufficient protection, yet does not require monopoly over the resources to enforce it. 

Thirdly, the system should be as transparent as possible. That means that it needs to provide 

automatic resource management so that user would not be concerned with locating or scheduling tasks. 

5.3.2 System design 

Having defined the requirements, it is possible to begin thinking about the design. It must be noted, how

ever, t hat this section will provide a general design of a system, and uot the discussion on implementation 

of such, although some implementation details are mentioned. 

It is clear that any system having the above described characteristics should have at least two main 

parts: 

• Client - the process requesting for a problem to be solved 

• Server - the process solving the problem and returning the result to the client 

However , the combination of generality, transparency and process distribution creates a need for another 

tier: a resource manager. The resource manager would be responsible for receiving clients' requests and 

sending them to the appropriate servers. At this point it, is helpful to discuss distribution of problems to 

resources. There are two possible avenues: one-problcm-one-rcsourcP or one-problem-multiple-resources. 

It is clear that different problems would require different approaches. 

Consider two simplified examples. In case one the client. has a 11umber of various polynomials that 

need to be solved. This is clearly a onE>-problem-one-resource case, because nothing would be gained 

by solving a polynomial in distributed manner. However, this problem can be solved in a distributed 

fashion in a manner where each nude on I.he network solves a particular polynomial. In case two one 
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has two very large matrices that need to be multiplied. This would be a one-problem-multiple-resources 

situation, since matrix multiplication could be efficiently done in parallel over several nodes. Having 

considered both situation one comes to the conclusion that for a system to be truly general in nature, it 

would have to be able to deal with both types of problems. To allow that, the system will have a four-tier 

architecture, with the third and fourth tiers being problem dependent. A more detailed description of 

the four tiers follows. 

Tier One - Client This is the tier that would be made available t.o t.he end user - the programmer 

trying to utilize the system. This tier will provide the user-level API and the necessary level of 

transparency. On the side visible to the user it will provide interface for submitting a problem and 

returning the result. Everything beyond this side will be invisible to the user. On the other side 

of this tier will be the mechanisms responsible for contacting a resource manager, submitting the 

problem and receiving the result. Possible design issues for this layer will be discussed later . 

Tier Two - Resource Manager This is the only tier visible to the client tier. It will be responsible 

for locating an appropriate problem solver, submitting the problem and retransmitting the result 

to the client tier. This tier would act as a universal scheduler / load balancer. If there are more 

than one problem solvers available, it would be responsible for choosing the one that would be most 

efficient in a given situation. 

Tier Three - Problem Solver T his tier is responsible for solving a problem submitted by the resource 

manager. It will consist of a collection of problem-solver objects, each knowing how to solve a 

particular type of problem. If a given problem is of a one-problem/one-resource type, then it would 

be solved in this tier , and the result would be returned to the resource manager. However, if the 

problem is of a one-problem/multiple-resource kin<l, then this tiP.r will act as a resource manager 
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for this particular problem and launch parallel / distributed execution on the fourth tier. 

Tier Four (Optional) - Distributed / Parallel Problem Solver This is the least generalized tier, 

visible only to the third tier. It consists of units that report to the respective problem solver and 

are used in solving a particular type of distributed problem. 

To provide the highest. level of generality, one would have to allow for different tiers and parts of 

tiers be developed and implemented by various people and organizations . One of the possible ways of 

doing so, is to utilize the already developed CORBA model (see section 3.3.3). CORBA would allow for 

the tiers to be constructed of objects , where each object can be developed independently with all t he 

communication being handled by ORBs. 

The next issue that comes up is the one of communicating the problem to the resource manager . 

Because the resource manager is the only tier visible to the client, it must. he able to accept all types of 

problems. Moreover, the abstraction mechanism that is adopted by this four-tier architecture implies that 

the resource manager itself knows nothing about the problem or its solut.ion - it only knows the t hird-tier 

object s that can solve it. This issue can be resolved in two possible ways. One is to define a Problem 

Definition Language (similar to that of Interface Definition Language of CORDA mentioned in section 

3.3.3). However, this langu age would either severely limit the types of problems for which problem-solver 

objects can be developed, or would require those objects t.o have almost human intelligence. T hus, it 

appears that developing such language is not feas ible at this time. Another approach would be similar 

to the one adopted by the Internet Protocol (section 3.2.2) and similar network standards. IP datagrams 

carry various types of traffic without really knowing the contents. However, when the packets arrive to 

the destination , they have to be passed to the appropriate service, each service having its own standard. 

To allow this, IP includes a number in its datagram header that identifies t.hc type of service that receives 

the contents. T he contents themselves are encapsulated in an IP packet without regard to their meaning. 
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This requires the sender to know the number of a receiving service. Such a requirement, however, does 

not pose any problem when the service uurnbers are standardized an<l publislied. To adopt this idea to the 

client-manager communication issue, the model would assign numbers to the types of problems for which 

problems-solver objects are developed. T he client in this case would not have to provide the explanation 

of the problem - it would only supply the arguments and the problem number. The arguments would be 

encapsulated in a message t hat is attached to a problem number and sent to the resource manager. The 

resource manager would not have to know which problems correspond to which numbers, it would simply 

find the problem-solver object in tier three with the corresponding problem number. Then it would 

retransmit the message it received from the client to the problem-solver object. The most important 

benefit of this architecture is that the resource manager does not need to be redesigned every time a new 

problem-solver object is developed for a new type of problem. This approach also solves the question of 

how the resource manager would communicate the problem t.o the problem solver. 

There is really no issue in communirat ing between tiers three and four, since the object in those t iers 

that need to communicate wit.h each other are a pa.rt of a single mechanism, and would be written by a 

single developer (group). 

The issue of fault tolerance could bf~ solved by allowing more than one resource manager. Any given 

manager would send a copy of the problem request to several other managers it knows and inform them 

who the client is, and who was assigned to solve the problem. In the case that the original resource 

manager dies or becomes unavailable the secondary managers would be able to step up to the bat. If 

resources permit and the fault tolerance is of big importance, resource manager could also redundantly 

assign the same problem to several problem-solver objects. 

The issue of security can be broken up into two parts. Firstly, is t.he quest.ion of how much access the 

resource owners would allow to the outside users. This can caRily be regulated by picking which objects 
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the computer will run. Since the structure of the whole model is highly modular, not all parts have to 

be run on a computer to participate iu the combined distributed system. The second issue is that of 

ensuring that the object on the other side is really what it says it is. This could be done by augmenting 

all communication channels with public-private key encryption mechanism (section 4.1). 

This section will not discuss the issues related to the design of problem-solver objects. Those are 

designed to fit the particular problem they are solving and could employ a wide variety of solutions, 

using CORBA, MPI, PVM, or multitude of other mechanisms. To ensure t.he compatibility with other 

objects, though , this modules would haw to adhere to a certain argument passing protocol. This could 

be worked out by various solver desig1wrs, since the overall system is oblivious to such details. 

These are some of the main, but <'ertainly not all of the issues in dPveloping such a system. More 

specific details will depend on the implementation which is outside the scope of this paper. 

6 Conclusions 

This paper has given a brief overview of issues a developer of a distributed system would face. It has 

also given a generalized architecture of a distributed system that could be used for solving a wide array 

of problems. This architecture is so far only theoretical and has not bef'n implemented by the author. 
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