
Ouachita Baptist University Ouachita Baptist University

Scholarly Commons @ Ouachita Scholarly Commons @ Ouachita

Honors Theses Carl Goodson Honors Program

1999

Issues in Automated Distribution of Processes Over the Networks Issues in Automated Distribution of Processes Over the Networks

Alexey Morozov
Ouachita Baptist University

Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses

 Part of the OS and Networks Commons

Recommended Citation Recommended Citation
Morozov, Alexey, "Issues in Automated Distribution of Processes Over the Networks" (1999). Honors
Theses. 122.
https://scholarlycommons.obu.edu/honors_theses/122

This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly
Commons @ Ouachita. It has been accepted for inclusion in Honors Theses by an authorized administrator of
Scholarly Commons @ Ouachita. For more information, please contact mortensona@obu.edu.

https://scholarlycommons.obu.edu/
https://scholarlycommons.obu.edu/honors_theses
https://scholarlycommons.obu.edu/honors
https://scholarlycommons.obu.edu/honors_theses?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.obu.edu/honors_theses/122?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mortensona@obu.edu

Issues in automated distribution of processes over the networks

Alexey Morozov

morozov@ava.obu.edu

:\ pri l 20. l ~J!l!:)

RI EY-HICKINGBOTHAM LIBRARY
OUACHITA BAPTIST UNIVSf'461TY

Contents

I Introduction

1.1 Distributed computi11g

1.2 Parallel computing

1.2.1

1.2.2

1.2.3

SIMD .

MIMD.

MISD .

2 Reasons for distributing applications across the networks

3 Existing models and tools

3.1 Models

3.1.1 Client.-~('rver

3.1.2 Networks of workstations (NOWs) and duskts

3.1.3 Metacomputing ..

3.2 Communication protocols

3.2.1 OSI - Open Systems Interconnection .

3.2.2 IP - Internet Protocol

3.2.3 TCP - Transmission Control Protocol

3.2.4 UDP - User Datagram Protocol .

3.2.5 XTP - Xpress Transport Protocol

3.2.6 ATM - Asynchronous Transfer Mode .

3.3 Tools

3.3.l PVM Pm~lkl Viri.11.d .\ l;1d 1i11('

2

3

3

4

4

5

5

7

7

7

7

8

8

9

9

10

11

11

11

12

12

3.3.2

3.3.3

MPI - Message Passiny; Interface

CORDA - Common Object Request. Broker Architecture

4 Related issues

4.1 Security ..

4.2 Scheduling and load balancing .

5 Developing and experimenting with distributed sys t em s

5.1

5.2

5.3

Study of the ~n·r poi.nt.· to-poi111 n J1 111 uu1 1i ca.f.11n1 ll l(' t liorl.- .

Some results in distributing prncc~ss~$ ov<'r "slow'" net.works

Developing a genernl-purpo~lf' dist.ribnted system

5.3.l

5.3.2

System requirements

System design

6 Conclusions

1 Introduction

13

14

15

15

18

19

20

23

24

25

26

30

The main goal of this paper is t o survey the issues an application de"d oper would have to resolve in

producing a system that would be ablP to spread its computa tiona l load across several computers con

nected by a network . D('fori> t.lii s c ;1.11 I H' d1 J111· . a li rwl i ii! i " ofn < 1 ic111 l.11 d ist ri I 11 1k d ;111d p;u allel computing

is necessary.

2

1.1 Distributed computing

Distributed computing is generally defiue<l as a type of computing in which different components and

objects comprising an application can he located on diffff<'nt compukrs connectPd t.o a nPtwork [6]. Thus,

for example, a word prncc::-s i11!!, applica tion rnay ('011s i ~I () r a.11 t ~dit.nr c< •D1pu1rf•11t l\'.'l1di11g m1 one c.omputer,

spell-checker componeut residing on a second comp11tpr and a t.lwsaun1s ro111porw11t. rnsiding on a third

computer. It is possible that. thesP- different rnmput.ers may be running rliff,.rent operating systems. Since

different components may be written b:v different <lev<'lopers or groups nf developers, all the parties must

must agree upon a certain standard for inter-object corurnuuication. Ouc of the most common standards

in the industry is CO RB A (section 3.3.3). which will be discussed later.

1.2 Parallel computing

.
Parallel computing is the use of more than oue CPU to execute a program . [6] There are some differences

in programming such systems as compared t.o "regular" or "sequential'' programming. In sequential

programming there is usually one process (program) working on a problem. \~'hen a problem is solved in

parallel, there are mult,iplc pnJr•·:;scs worki 11µ, ou i i . .-\ f; i11 a11~· ('t •m l 11 11< ·d dl'ort . t.lw part.icipa.nts need to

communicate with each ot.h"'" Often. 'lnn11 · sort. of ma11 e:rg1·11H•111 is ;1ls (l r<'q11i n'rl . ProJ!;ramming parallel

systems also provides a challenge bccaww most pro~ramnwrs li;wp hccn trained to think sequentially.

For example, if there a.re two tables of 11 u111 bers that need to hr. multipli('d, tlu· most common approach

that comes to mind is iterating through every element of t he f.able. HoweYcr, in the parallel paradigm,

iteration is not needed, since onP would have a host of CPUs, each a<lrli11g one element, thus, in the

combined effort, adding all of them at once. Overall, particular problems and solutions depend on the

type of the parallel algorithm, problem at hand, and the hardware available.

There is a widely recognized classification of parallel machines, known a..., Flynn's taxonomy, that dis-

3

tinguishes between thn~c l.ypcs of ardtil r-ctur('s: Sll\l D. MI MD. ;md l\l JSD. Jt is 1101. clit!icult to generalize

the concept and apply it to f.he algorithms and, since this paper is dealing mon· with software methods

than hardware, the following sections will do so.

1.2.1 SIMD

SIMD stands for "Single Instruction, Multiple Data'' . It, is one of the most common uses for parallel

computing, mainly due to the ease with with which such algorithm can be distributed across multiple

processors. In this model all of the processors are running the same set of instructions, but they are

supplied with different data. For example, if the task at hand is to calculat.e GPA for a group of students,

the same algorithm is applied to all of them. Thus each processor is using the same program, but is

accessing data for different students. Clearly, this way the task will be performed much faster. However,

not all tasks can be P<\ralleli:r,<.'d as easily :-1s I hr· mH ~ 1111·111 io1u·d ah11w.

1.2.2 MIMD

MIMD stands for "Multiple Instruct.iou, l\1ultiple Data". T his µaratligm <"an he easily compared to

the manufacturing of an automobile. Ilefore the final product can be assembled, different parts (wheels,

engine, interior) must be made. For each part , a different production algorithm and different set of source

materials is used. Although this methocl may seem more flexible than SIMD, there are certain drawbacks.

One such drawback is that the whole process needs to be orchestrated hy some sort of manager. For

example, the engine cannot be assembled until pistons have been made. In addition to that, some tasks

are completed faster than others, thus crc<tting the possibility that some processors are left with nothing

to do.

4

1.2.3 MISD

MISD stands for "Multiple Instruction, Single Data" . There is no commonly known implementation of

this paradigm, but it is not hard to imagine one. For example, if one has a signal recording with a lot

of interference and wishes to apply difforent noise reduction techniques to it, he or she can use multiple

processors running different sets of instructions, yet operating on the same data.

2 Reasons for distributing applications across the networks

There are many computer applications tli;)f ~impl.v \\·<mid l;1k1• :rn 11 na('('1•ptably lung time to produce

results if done sequentially and due to that, haw~ to bC' dmw iu JHll <.1.lli:I. E,\ ;.i,urples of 1;uch applications are

image processing, code breaking, calculat.iom; with large unmhers, complex mathematical models. Tradi

tionally, parallel proce~sing was the domain of large and extrcrncl:v E'xpe11sive supercomputers. However,

as faster and better networks developed, a.n alternative approach wa.-; realized: to combine multiple PC's

connected by a network into a virtual supercomputer. In addition t.o increal->e<l network speed, the work

stations themselves are becoming mor<' and more powerful (for example, according to research at UC

Berkeley [1] a top end 1994 workstation is roughly one-third the performance of a Cray C90 processor)

As the Beowulf project has proved [14) [15), a cluster of such machines can provide a much cheaper

alternative to supercomputers. Although Beowulf dusters have shown their massive computing power,

this power depends largely on the fact that all of the nodes in the clnst.t•r arf' of the same architecture,

run the same type of software (operating ~.vst.em , applications, Pt.c.) and arc connected by a high-speed

local network.

Another reason for developing distributed applicat.iom; is IJw fact that pron~ssurs are getting much

faster, but disks are improving mostly in capacity, not pcrformancP [l] . If this trend continues the

5

increases in processor performance will yield little improvement for the eud-user, since most of the time

will be spent waiting for the 1/0. With t.hc availability of fast networks a different alternative develops:

a potential existence of a huge memory pool on the network which can be accessed faster than local disk.

A brief survey of the usage of the workstations and PC's would reveal that most of the time their

CPUs are idling or using only a small perrr.•11tage of tlwir c~-rl<>s for ro111p11t.atio11s of any sort. Clearly,

a great abundance of rcsl1nrces could be harvester! if Hwsc cydcs <'011JJ he utili-.ed . Two main problems

opposing this idea are the difficulty of (or, rather, delays in) communicat.ion between the hosts and the

heterogeneity of the computers and their :>ystems. Some groups are already working on finding solutions

to these problems. Programmers of UC Ilerkele~1 's SETI@home arc working on a project that would

combine the power of the PCs connected to the Internet and use their idle time (that is usually spent

on screen-savers) to look for patterns in the data collected by SETis Arecibo radio telescope [18]. The

investigators of SETI@home hope to get at least fifty thousand PCs involved and, according to them,

that would rival all current SETI projects. This project should be very successful in utilizing the idle

resources available throughout the Int.ernet, but it is rather inflexible in several ways. It is strictly a

client-server application with clients dc:>igued for oue part.icular number-crunching task, where the server

simply provides the data upon the request. of the client. and has no influe11ce whatsoever on the scheduling

of the client tasks.

Yet another (and on a much larger scale) approach wa.<; takcu h.r a group from the University of

Virginia. The goal of the Legion Proj11ct. f 4] (5] is to develop t.he architl'"t.urc t,hat, would combine multiple

computers of various types across the Internet into a virtual world-wide computer that is relatively

transparent1 to the user.

It is evident that the resources of the networked computers arc there to be harvested by the developers.

1 appears as a single machine, rather than n combination of many

6

To take advantage of those resources, programmers will have t.o know an<l understand the issues related

to the environment and havl' t.h<· appropri ate tools t.o ma11ipulat.1~ i t .

3 Existing models and tools

3.1 Models

There are several models for distributing processes across several hosts connected via a network or net

works. These paradigms are not mutually exclusive, hut rather intersecting and some are the evolved

versions of others.

3.1.1 Client-server

The client-server mod~ is one of the oldest models for distributed processing. In this model an application

consists of a group of cooperating proc('SS('s, called S('rvers, that offer services to the users, called clients

[17]. The client and server machine:; normall.v a.11 ru11 t.hc :-.n111t• opcr:i Liuµ. sp;t.c-'lll. A machine may run a

single process, or it may nm many di<•nts. ma11y i:;crvc•rs, or a mixt.un• of I he two. The communication

between clients and servers is usually based on a simple, connectionless rc•qm·st/rcply protocol. The client

sends a request message to the server , a:-;king for some sPrvice (e.g. fiml an Pntry in the database). The

server does the work and returns the <lata requested or an error code indicating why the work could not

be performed.

3.1.2 Networks of workstations (NOWs) and clusters

Networks of workstations model is a relatively general idea of utilizing m;ources of the workstations on

a network. The workstations may run the same or different opcrat,i1111; systems and can be of the same

7

or different architectures. Also, the functions of the nodes of these networks may be diverse with some

systems being used for storage, others as computatioual drones, and so on.

Clusters are usually a more specific case of NOW. In the case of clust.ers, the nodes are confined to

a local-area network segment consisting entirely of the cluster nodes. Most of the nodes have no direct

connection with the outside world, all necessary interface provided by a limited number of "entry-point"

stations. All the nodes are of the same architecture and run copies of the same operating system. Most

often, some sort of shared disk space exists, and sometimes a network shared memory model is used.

3.1.3 Metacomputing

A metasystem is a collection of geographicall.v scparn.ted n !so111-c:Ps (peopk\. cmu1rnt.<'rs , instruments, da

tabases) connected by a high speed network. A md.asyste111 is dist.inguisllC'd from a simple collection

of computers by a software layer, often c-allcd mi<ldleware, which transforms a collection of independent

resources into a single, coherent, virtual machine. This machine should uc as simple to use as the machine

on the user's desktop, and should allow easy collaboration between r.ollcagues located anywhere in the

world (7).

3.2 Communication protocols

It is clearly understood that if processes are to be distributed across the network or networks, there must

exist some mechanism that would allow data to be pa."sed from one computer connected to the network

to another. A range of communication protocols is already in place, wit.h new protocols2 continuing to

emerge.

2 An agreed-upon format for t.r l\11srnitt i11g data het.w('cn t.wr, d evin•R l(j l

8

3.2.1 OSI - Open Systems Interconnection

Developed by ISO (International Standards Organization), OSI is a standard for worldwide communica-

tions that defines a networking framework for implementing protocols in seven layers. Control is passed

from one layer to the next, starting at. t.he application layer in one station, proceeding to the bottom

layer, over the channel3 to the next station and back up the hierarchy [6] . Although at one time most

vendors agreed to support OSI, it wa::; too loosely defined, and a..:; a result currently very few of the

communication protocols ar<' fully OSI-compliant. How<'V<'r. majority of t.hc protocols have most of the

OSI functionality, often combining sP-vcral OSI layers int.o one.

OSI consists of seven layers: application layer, prescntatio11 layer, session layer, transport layer,

network layer, data link layer and a pl1ysical layer. Tlw physical layer manages putting data onto the

network media (like copper or optical cable) and taking the data off. The data link layer is responsible

.
for physically passing data from one uode to another. The network layer routes data from one node to

another. The transport layer is rnsponsihle for end-to-end integrity of data transmission. The session layer

is responsible for establishing and maintaining communication channds (in practice, this layer is often

combined with the transport layer). The presentation layer manages data representation conversions.

Finally, the topmost layer, application layer, is responsible for program-to-program communication.

3.2.2 IP - Internet Protocol

The Internet Protocol is designed for use in i11terco1111ertcd systems of packct.-switclu!d computer commu-

nication networks. The Internet Protocol provides for transmitting blocks of data called datagrams (or

packets) from sources to desti nations, when-~ sources and destinations arc hosts identified by fixed length

addresses. The Internet protocol also provides for fragmentation and reassembly of long datagrams, if

3 a communication path between two computers or devices

9

necessary, for transmission through "small packet" networks [11] .

The Internet Protocol is specifically limited in scope to provide the functions necessary to deliver

a datagram from a source to a destination over an interconnected system of networks. There are no

mechanisms to augment. end- to-encl daUt rel iability. flow control or sequencing [11]. IP is called on by

host-to-host protocols in an Internet environment. It calls on local network protocols to carry the Internet

datagram to the next gateway or destinat.ion host .

3.2.3 TCP - Transmission Contrnl Protocol

Most often IP is used in conjunction with TCP, creating the well-known TCP /IP suite.

TCP is a connection-oriented , end-to-end reliable protocol designed to fit into a layered hierarchy of

protocols which support multi-network applications. TCP provides for reliable inter-process communi

cation between pairs of processes in host computers attached to distinct. but interconnected computer

communication networks. Very few assumptions are made as to t he reliability of the communication pro

tocols below the TCP layer. TCP assumes it can obtain a simple, potentially unreliable datagram service

from the lower level protocols. In principk, the TCP should he ahlc lo operate a.hove a wide spectrum

of communication systems ranging from hard-wired comwctions to p;1rkrt-swit.ched or circuit-switched

networks. (12).

TCP /IP suite usually includes a wide range of additional prot.orols: Us1~r Dat.agram Protocol (UDP),

Simple Network Management Protocol (SNM P) , Internet Control Message Protocol (ICMP) , Address

Resolution and Reverse Address Resolution Protocols (ARP / RARP) , TELNET Protocol, File Transfer

Protocol (FTP), Simple Mail Transfer P rotocol (SMTP), Hypertext Transfer Protocol (HTTP), Domain

Name Service (DNS), Remote Login protocol (RLOGIN) , Dynamic Host Configuration P rotocol (DHCP),

Post Office Protocol (POP), Internet Message Access Protocol (IMAP). I will briefly describe some of

10

the protocols relevant to the topic.

3.2.4 UDP - User Datagram Protocol

The User Datagram Protocol is defined to make available a datagram mode of packet-switched computer

communication in the environment of an interconnected set of computf'r networks. This protocol assumes

that the Internet Protocol is used as the underlying protocol. UDP provides a procedure for application

programs to send messages to other programs with a minimum of protocol mechanism. The protocol is

transaction oriented, and delivery and duplicate protection are not guaranteed (10].

3.2.5 XTP - Xpress Transport Protocol

TCP /IP suite has held up rather well through the changes in the underlying networking infrastructures.

However, there were several efforts to examine th<' service:,; TCP /1 P fails tn provide and to research .
the possibilities of bettering transport sc•rvices. One of the rcsult-R w:-i:-; the development of the XTP

protocol (although it has already been incorporated into some proprietary protocol stacks and several

experimental suites, it has not becu standardized by either ANSI or IEEE) . In comparison to TCP,

XTP boasts better How and rate contrnl and superior error-recovery model. XTP also allows for reliable

multicast support (TCP fails to provide multicasting altogether), message priority and scheduling, quality

of service negotiations, selective retransmission, and several other feat.un)s not available in TCP [16).

3.2.6 ATM - Asynchronous Transfer Mode

Asynchronous Transfer Mode is emerging as the primary net.working technology for next-generation,

multi-media communication. ATM protocols are designed to handlf: time critical data (video, audio) in

addition to more conventional data communicat ions. ATM protocols arc c.apable of providing a homoge-

neous network for all traffir. typ<'s. The same prot.ocob am used regardless of whether the application is

11

to carry telephone conversation, video or computer traffic over local area networks (LANs), metropolitan

area networks (MANs), or wide area networks (WANs).

3.3 Tools

As one cannot build a car without tools, one also cannot build a computer application without them.

This is even more true for distributed applications. Most of the communication protocols described in

the previous sections come with some sort of function library that. can be used by the developer, yet this

is clearly not enough. To develop distributed applications onP. needs tools that treat different processes

as a conglomerate, while allowing for i11dividua.l control and accf'ss at t hf' sam<' time. These tools need

to provide not only data sharing capabilities hut also various managerial tasks.

3.3.1 PVM - Parallel Virtual Machine

The PYM software provides a unified framework within which parallel programs can be developed in an

efficient and straightforward manner using existing hardware. PVM enables a collection of heterogeneous

computer systems to be viewed as a single parallel virtual machine. PVM transparently handles all

message routing, data conversion, and task scheduling across a network of incompatible computer archi

tectures (3] . More precisely, PVM allows for the following: user-configured host pool 4 , translucent access

4 the application's computational tasks exccut,e on a set of machines that. are selected by the user for a given run of the

PVM program which can also be altered by adding and deleting machines during oµcrnt.ion

12

to hardware 5 , process-based computation 6 , explicit message-passing model 7 , heterogeneity support 8 ,

and multiprocessor support 9 (3].

PVM was developed mainly by the PVM group at the University of Tennessee and Oak Ridge l\'ational

Laboratory.

3.3.2 MPI - Message Passing Interface

Message passing is a relatively simple paradigm that allows different. processes to exchange messages.

This paradigm is used widely on certain classes of parallel machineR, especially those with distributed

memory. Over the last ten years, many applications have been cast into this paradigm, each vendor

implementing its own variant of message passing. To enable creation of port.able applications that utilize

the message passing concept, it was necessary to develop some sort of widely accepted standard. Through

the collaboration of about 60 people from 40 organizations (mainly from the US and Europe) the Message

Passing Interface standard (8] emerged.

The goals of the MPI forum were: t.o design an application programming interface10, to allow efficient

communication, to allow for implementations that can be use<i in a hf'terogeneous environment, to allow

convenient C and Fortran 77 bindings for the interface, to define an int.erfo ce that can be implemented

5 application programs either may view 1.hl' ha rd ware environment as an a l.t r ibu tcll':;s rnlJPc.l ion of processing elements

or may choose to exploit the capabilities of specific machines in the host pool by poHit.ioning certain computational tasks

on the most appropriate computers
6 the unit of parallelism is a task, an independent sequr.ntial thread of control that is capable of computation and

communication , with a possibility of multiµle tas ks executing on a single processor
7 collections of computational tasks, each perform ing a part of an application's work load cooperate by explicitly sending

and receiving messages to one another, with message size limited only by the amount of available memory
8 PV M supports heterogeneity in terms of madrincs, networks, applications and data representations
9PVM uses the native message-passing facilities on multiprocessors to take advantage of t he underlying hardware

10 AP! - a set of routines, protocols, and tools for building software applications [6j.

13

on many vendors' platforms, to allow for language-independent semantics, a.nd to allow thread-safety 11 .

In the design process forum members assumed a reliable communication interface, meaning that user

does not have to cope wit h communication failures - such failures are dealt with by the underlying

communication subsystem (such as TCP). The forum also tried not to devia te too much from the existing

message passing and parallel processing models (such as PYM). The resulting standard includes point-

to-point communication12 , collective opC'rations13 , process groups14 , communication contexts15 , process

topologies16, bindings for Fortran 77 and C and environmental management and inquiry.

3.3.3 CORBA - Common Object Request Broker Architecture

Developed by Object Management Group, CORBA is an architecture that enables pieces of programs,

called objects, to communicate with one another regardless of what programming language they were

written in or what operating system they are running on.

The main components of CORBA are object. systems, Object Rcq1wst, Broken; (ORBs) and clients.

An object system includes entities known as objects. An object is an identifiable, encapsulated entity

that provides one or more services that. can be requested by a client. Client. is an entity that wishes to

perform an operation on the object. ORB is responsible for all of the mechanisms required to find the

object, to prepare the object implementation for the request , and to communicate the data making up

the request. T he interface the client sees is completely independent of where the object is located or

what programming language it is implemented in. To make this possible, objects need to describe their

11 thread - a part of a program that can execute independent ly of other parts [6].
12in this case, communication method in which there is one sender and one nx:eivcr
13operations involving more than one sender and /or receiver
14ordered collections of processes, each with ra nk [8]
15contexts provide the a bility to have a separate safe "universe" of message passing bf't.ween the two groups, such that a

send in a local group is always a receive in the remote group, and vice versa
16define a special mapping of t he ranks in a group

14

interfaces. These definitions of interfaces cau be defined in two ways. They can be defined statically in

an Interface Definit ion Language. This language defines the types of objects according to the operations

that may be performed on them and the parameters to those operations. Alternatively, or in addition,

interfaces can be added to an Interface Repository service; this service represents t he components of an

interface as objects, permitting runtime access to these components. 19)

4 Related issues

4.1 Security

In the modern age of the Internet , computer security has become one of the most important issues in

the industry. This issue becomes even more important if one wishes to develop applications that would

function across the networks. Moreover , in the paradigms such as metarnmputing, the resources that

are combined into the metacomputcr often belong to different people ancl organizations. The owner of

each host would want to be ensured of the security of his system. In addition, different hosts may need

different levels of security.

When dealing with network security, t.wo main issues arise. One is the problem of authenticating users

(or clients) that should have access to a given computer or service. The other issue deals with protecting

the data when it is traveling on the network.

There are several mechanism availahle for authenticating users. The simplest one is shipped with any

Unix or Windows NT operating system. It is based on a user databa.<;e that keeps a user's name and

his/her password. When the user is trying to log in, t.he system will ask for a password and compare

it with the one stored in the database. It. is also conceivable that any giveu user database may become

compromised. To avoid damages that could he inflicted, the passwords in the database are usually stored

15

~. , · ~Y-Htcmt r...oTHAM uEnARi
.. l..t\CHtT A i'.'.AP I li> T UNtva~nY

in an encrypted form. Moreover, the encryption scheme used is one-way, meaning that once the password

is encrypted, even the system does not know how to decrypt it. In this case, the password supplied by

the user is also encrypted before the comparison is made.

The issue becomes a little more complicated when the same user (or set. of users) wishes to have access

to more than one system. The simplest solution would be to duplicate the user database and distribute

it to multiple computers. However, this method is very cumbersome and inflexible in many ways. For

example, a user currently logged into one system changes his/her password. That. means that all copies

of this database on other systems need to be updated by some mechanism. The problem becomes even

more complicated when multiple systems do not have exactly the same user set. Finally, this solution

becomes unacceptable if one wishes to make the network transparent to the user.

Network Information Service (NIS) may provide a solution to this issue. NIS provides generic database

access facilities that can be used to distribute information to multiple hosts on the network. It is based on

RPC17 and consists of a server, a client-side library and several administrative tools. NIS keeps database

information in so-called maps containing key-value pairs. Maps arc stored on a central host running the

NIS server , from which clients may retrieve the information through various RPC calls. [13]

Another authentication mechanism is Kerberos, originally designed at MIT. Kerberos is a trusted

third-party authentication service. It is trusted in the sense that ear.h of its clients believes Kerberos'

judgment of the identity of each of its other clients to be a.c.curat.e. Kerh<!ros consists of a Key Distribution

Center (KDC) that runs on a physically secure computer somcwh<>rn on the network and a library of

subroutines that. are used by distributed applications which want t.o aut.henticate their users. Kerberos

generates private keys which are given t.o the authenticated clients. Using these keys, Kerberos' clients

can convince each other of their identity [2] .

17 remote procedure call - a protocol that allows a program on one computer to cxl.>cut.e a program on a server computer[6]

16

It may also be necessary to encrypt the data traveling across the network. This can be done in various

ways. One possible scenario is to utilize a proprietary protocol, but this mctho<l defeats the purpose of

combining the resources of systems possibly belonging to different organizations. Another solution is to

use some publicly known encryption ~r.hcme. This scheme must b<> constructed in such a way that the

knowledge of how to implement the scheme would not. allow one to decrypt a message without proper

authorization. A rather elegant method of encryption, called public-key (or assymetric) encryption was

put forth in 1976 to solve the a.bove-me11tioned problem. The method is based on the following paradigm:

the encryption algorithm is known to everyo11e and each party involVf~<l creates a pair of keys. Either key

can be used with the known encryption algorithm. One of the keys is the encryption key and it is made

public. The other key, known only to the owner, is the decryption key. Thus, for each person A, there

is a an encryption function encrypt A() that is known to everyone, and a decryption function decrypt A()

that is known only to l'\..

Each pair of the keys is constructed so that it has a special property. For any message m,

decrypt A (encrypt A (m)) = m

Thus, applying the private decryption key to a message t.hat has already heen encrypted with the public

encryption key recovers the original message. It is this particular property that makes public/private

pairs work. It is also important that knowledge of the public encryption key does not make it easy to

find the corresponding decryption key.

Additional functionality of public-key encryption is the ability to create digit.al signatures. A digital

signature allows the recipient of a message to verify the identity of the sender and to ascertain that the

contents of the message have not. been altered. To enable this , the public/private pair needs to have an

additional property

r,ncrypt A (decrypt A (m)) = m

17

Thus, if A wishes to send a signed, verifiable message m to D, A needs to apply A's private decryption

key, and then B's public decryption key to the message, resulting in enCl'yptn(decryptA (m)). This, now,

can be sent to B, who will apply his/her private decryption key, resulting in

deC?·ypt B (encrypt n (decrypt A (m))) = decrypt A (m)

Applying A's public encryption key will recover the message:

encrypt A (decrypt A (m)) = m

Since only A could have known A's private decryption key, the message must have been truly from A

and not corrupted.

4.2 Scheduling and load balancing

One of the most interesting problems in the distributed computing is that of optimal scheduling of

processes. Since in the distributed environment, applications have more than one host available for

computation, it become.s necessary t.o det<mnine where and when to mu a certain process. Scheduling

can be done either statically or dynamically.

In static scheduling the assignment of processes to the hosts/processors happens before the execution

begins. This method, although very simple, has multiple drawbacks. To achieve any sort of efficiency, the

application's behavior needs to be predicted before the application itself is started. Although, knowing

the logic of the program, it may be possible to derive some prediction. However, such prediction would

not be able to take into account any changes in processing environment, that. were brought about by other

processes occupying the system. That is, it is virtually impossible to predict. the processor load due to

other applications.

In dynamic scheduling processes arc (re)distributed during the cxl'cution of the application. The

18

process of transferring processes from heavily loaded processors to lighter loaded processors is called load

balancing. For this scheme to work, several things need to be known to the scheduler/load balancer:

• how loaded are the processors available to the application

• how much effort will it take to transfer the application to a different host/processor

• how loaded is the current processor

Load balancing operations may be centralized in a single processor or distributed among all processing

elements . Also, load balancing can be either sender or receiver init.iatc<l. In the sender initiated scheme

a local host makes a decision as to where a new task is to be executed and sends it there. At the target

processor a queue of scheduled jobs may be formed. In the receiver initiated scheme a local host keeps

the new task until a processing element reports ready to accept a new job. Load balancing techniques

are also classified into static and adaptive. In a static model t he scheduling decisions do not depend on

the current state of the system, but rather on the average behavior and some predetermined scheme (like

round-robin or random). Adaptive load balancers, on the other hand, react to changes in the system

state. It is obvious that an adaptive balancer/scheduler is much more complex to implement and will

itself produce a heavier load on the system.

5 Developing and experimenting with distributed systems

After having discussed various issues a programmer or software cngi11eer may have to deal with when

building a distributed system, it may be helpful to see more concrf'te examples of such dealings. This

section will provide the reader with some of such examples. It will describe development of the general

purpose distributed system. Sections 5.1 and 5.2 will explore the feasibility of distributing such system

19

across the non-local networks (i.e. networks with relatively long delay t imes and possibly high error rates)

anrl section 5.3 will focus on design of this system.

5.1 Study of the MPI point-to-point communication methods

Since communication between the processes is one of the most importa11t aspect.sofa distributed system,

it would be wise to see how certain communication tools act, under various network conditions.

For this experiment, MPI was chose11 as a message passing mechanism. Originally, it was intended to

compare the performance of MPI under two different transport protocols · TCP and XTP. That would

identify which network protocol is better suited for MPI. However , due to resource and time limitat ions

the experiment was limited only to the TCP suite and did not allow a11y comparison with XTP. Despite

that, it yielded some interesting results that may be helpful not just in the areas of distributed computing,

but also in the general data communications research.

The experiment consisted of sending messages of varied length back and forth using MPI point

to-point send mechanisms between two computers. The computers involved were two SPARC-stations

connected by an ATM network. The pathways were set up so all the cells traveling between station one

and station two were routed through A<Itech's AX/4000 test equipment. AX/4000 was used to introduce

errors and delays into the cell stream, thus simulating various net.work condit ions (ranging from local

area networks to metropolitan area networks to wide area networks with various degrees of errors.) The

round-trip time of the message was measured and the rate of message paHsing was calculated by dividing

the size of the message by the round-trip time. It must be noted that tlw rate found in this experiment is

not the network throughput because there is additional overhead added by the MPI message processing

mechanism.

Some results of this experiment are shown in figures 1, 2 and 3. Figure 1 shows the relation between

20

tes/SllC

1.4e+07

1.2e+07

1e+07

Se+-06

6e+06

4e+06

2e-+C6

0

0 200000

Hessages 14' to 1HB <Nf!lf' LAN

600000
B!!tes

800000 1e•06 1.2e+06

Figure 1: Rate of passing small (up to lMB) messages over a LAN-type network.

the rate of message passing to the size of the message for the networks with characteristics similar to .
t hose of local area network (like a university campus network). The measurements were made for the

delay levels of 0 millisecond and 1 millisecond with small and large 1:rror rates. It can be seen from the

graph that, as the error rate rises, the difference between the 0 millisecond network and 1 millisecond

network (otherwise significant) seizes t.o ~~xist. It also shows that a slower network with lower error rate

behaves better than a fast network with a higher error rate. Figure 2 shows the similar dataset for the

metropolitan area type of networks (a net.work connecting campuses in different areas of the metropolis.)

Results here are similar - as the error rate iucreases, the difference between slow and fast networks seizes

t.o exist.

Figure 3 shows the situation described by graph one from a slightly different perspective. Here the

round-trip time of the message is plotted against the size of the message for different delay end error rates.

Each point on the plot represents a message. At the lower error rates the time values are densely packed

21

es/sec Hessages ..., to 1HB oY«" ~
6e+06~~~~ ~~~~-r-~~~~..-~~~ ~~~~-r-~~~----.

3e+06

2e+06

1e+06

0

5oos de)a!:f, BER=1e-10 -

5411s de I "!,I, IER=le-6 ··---
10..s delay, BER=le- 10 -

1~ delll!,I, IER=lri -1 • ~-V'V"r\-nv.,...,,..i _ _... ____ .~--N ~4N1/V\,,Y•

600000
Bytes

800000 1.2e

Figure 2: Rate of passing small (up to lMB) messages over a MAN-type network.

ec
o.a

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 200000

Hessages 1.p to 1HB over LAN

600000
Bytes

800000 1e+06 1.2e+

Figure 3: Rate of passing small (up to IMB) messages over a MA N-type network.

22

into a line. However, as the error rate increases the time values become more diverse . This provides an

insight not only into any particular message passing mechanism, but also into any network and protocol

benchmarking. Normally, a network is benchmarked by providing a throughput vs. message size graph for

any given network, protocol, delay or error rate. Throughput is a ratio of message size to the round-trip

time. Normally, the round-trip time is considered a definite value for any given condition, thus producing

a single-line throughput graph. The data represented in figure 3 shows that t.he round-trip time should be

considered more like a probability function rather than any definite value. As the experiment has shown,

as the error rate increases, the distribution becomes less dense. This approach would be very helpful in

the evaluation of different protocols. For example, when one tries to compare XTP and TCP protocols,

the throughput graph would not be sufficient, since it would not disclose error handling capabilities of

the protocol as well as a probability function graph would (i.e. a protocol with a superior error-reduction

techniques would boast a much dense probability distribution for time values.)

Although the XTP implementation was not available to make the comparisons, it is possible to

hypothesize that in the environments with increased error rates, XTP would be a better transport agent

that TCP because XTP is supposed to have superior error-handling capabilities.

The source code of the program used to conduct this experiment can be viewed at

http://ava.obu. edu/-morozov/VSEP98/sr c/commtest .c

5.2 Some results in distributing processes over "slow" networks

Most of the reasons given for distribut<>d computing were given in th<' light. of fast local networks. Cur

rently, even with the advances in the technology, the speed of Internet has much room for improvement.

Thus, one could argue that relatively slow transmissiou speeds of the Internet would outweigh the benefits

of distributing tasks to mult iple hosts. T his is certainly true of t he tasks where communication is a rela-

23

tively large component compared to computation. However, it is conceivable that some applications do

not require much communication. These applications should not suffer much from lower network speeds.

To test this idea, a simple experiment was set up. In this experiment. a computational problem was

distributed to four processors separated by a "non-fast" network and the performance was tested and

compared to the performance of a program executing the same problem i11 sequential mode.

The computational problem consisted of squaring large tables of integers. Distributed implementa

tion consisted of computing elements a11<l a "manager" process that divided the problem into several

parts and assigned them to the computing elements. The program was written in C using the MPICH

implementation of MPI. Four workstations running Solaris operating system were available. These were

connected by an ATM network through the AX/4000 test equipment. AX/4000 was used to simulate

various network environments by introducing delays and errors into the traffic.

Results of this experiment are shown in figure 4. It is clearly seen that there is virtually no difference

between the times it takes to compute the problem on the network with 10 millisecond delays or 180

millisecond delays. It is true that in this case the distributed method is not. very much faster than the

sequential, but that is mainly due to the fact that only 4 nodes were available for processing.

The source code of the program used in the experiment is available at.:

http://ava.obu.edu/-morozov/VSEP98/src/mat-star.c

5.3 Developing a general-purpose distributed system

Having shown that distributed processing over the Internet is possible and even beneficial, one might

want the reader to get a feel of what it would be like to develop a distributed application. This section

will briefly discuss the design of a general-purpose system distributed over multiple computers.

24

ii.e (sec) Sequential vs. pseudoparallel 11atrix 11ultiplication
1'400.--~--...-~ ~~ ~~ ~~..--~--.~~ ~~-.-~~ ~---.

1200

1000

800

600

400

10..s dela\f ~

sequenl}lal • -

~· dela\j -
l9:l11s lll:f +-

/

o .._~--~~ ~~ ~~.._~~.._~_.~~--.~~......_~~..._~__,
450 500 550 600 650 700 750 000 850 900 950

Size <length of ~atrlx side)

Figure 4: Comparison of sequential and parallel table multiplicatiou utilizing networks of various speed.

5.3.1 System requirements

Before proceeding to the design, it is nec<!ssa.ry to state the features one would want this system to have.

Firstly, the model should be general enough to be adapted to a multitude of problems. This could be

understood in two ways:

• construct t.he model as a superclass from which multiple systems could be derived, each system

dealing with an individual problem

• generalize even further and design a system that would alone deal with varied tasks

As often happens, the increased generality could come at a cost of lesser efficiency. These trade-offs could

be studied once prototypes of different models are implemented.

Secondly, the system should not be limited to a Local Area Network, but must be able to distribute

across MANs, WANs, or Internet. This means that the system should be fault tolerant. It also implies

25

the possibility of resources being owned by different entities, thus creating the need for a security model

that provides sufficient protection, yet does not require monopoly over the resources to enforce it.

Thirdly, the system should be as transparent as possible. That means that it needs to provide

automatic resource management so that user would not be concerned with locating or scheduling tasks.

5.3.2 System design

Having defined the requirements, it is possible to begin thinking about the design. It must be noted, how

ever, t hat this section will provide a general design of a system, and uot the discussion on implementation

of such, although some implementation details are mentioned.

It is clear that any system having the above described characteristics should have at least two main

parts:

• Client - the process requesting for a problem to be solved

• Server - the process solving the problem and returning the result to the client

However , the combination of generality, transparency and process distribution creates a need for another

tier: a resource manager. The resource manager would be responsible for receiving clients' requests and

sending them to the appropriate servers. At this point it, is helpful to discuss distribution of problems to

resources. There are two possible avenues: one-problcm-one-rcsourcP or one-problem-multiple-resources.

It is clear that different problems would require different approaches.

Consider two simplified examples. In case one the client. has a 11umber of various polynomials that

need to be solved. This is clearly a onE>-problem-one-resource case, because nothing would be gained

by solving a polynomial in distributed manner. However, this problem can be solved in a distributed

fashion in a manner where each nude on I.he network solves a particular polynomial. In case two one

26

has two very large matrices that need to be multiplied. This would be a one-problem-multiple-resources

situation, since matrix multiplication could be efficiently done in parallel over several nodes. Having

considered both situation one comes to the conclusion that for a system to be truly general in nature, it

would have to be able to deal with both types of problems. To allow that, the system will have a four-tier

architecture, with the third and fourth tiers being problem dependent. A more detailed description of

the four tiers follows.

Tier One - Client This is the tier that would be made available t.o t.he end user - the programmer

trying to utilize the system. This tier will provide the user-level API and the necessary level of

transparency. On the side visible to the user it will provide interface for submitting a problem and

returning the result. Everything beyond this side will be invisible to the user. On the other side

of this tier will be the mechanisms responsible for contacting a resource manager, submitting the

problem and receiving the result. Possible design issues for this layer will be discussed later .

Tier Two - Resource Manager This is the only tier visible to the client tier. It will be responsible

for locating an appropriate problem solver, submitting the problem and retransmitting the result

to the client tier. This tier would act as a universal scheduler / load balancer. If there are more

than one problem solvers available, it would be responsible for choosing the one that would be most

efficient in a given situation.

Tier Three - Problem Solver T his tier is responsible for solving a problem submitted by the resource

manager. It will consist of a collection of problem-solver objects, each knowing how to solve a

particular type of problem. If a given problem is of a one-problem/one-resource type, then it would

be solved in this tier , and the result would be returned to the resource manager. However, if the

problem is of a one-problem/multiple-resource kin<l, then this tiP.r will act as a resource manager

27

for this particular problem and launch parallel / distributed execution on the fourth tier.

Tier Four (Optional) - Distributed / Parallel Problem Solver This is the least generalized tier,

visible only to the third tier. It consists of units that report to the respective problem solver and

are used in solving a particular type of distributed problem.

To provide the highest. level of generality, one would have to allow for different tiers and parts of

tiers be developed and implemented by various people and organizations . One of the possible ways of

doing so, is to utilize the already developed CORBA model (see section 3.3.3). CORBA would allow for

the tiers to be constructed of objects , where each object can be developed independently with all t he

communication being handled by ORBs.

The next issue that comes up is the one of communicating the problem to the resource manager .

Because the resource manager is the only tier visible to the client, it must. he able to accept all types of

problems. Moreover, the abstraction mechanism that is adopted by this four-tier architecture implies that

the resource manager itself knows nothing about the problem or its solut.ion - it only knows the t hird-tier

object s that can solve it. This issue can be resolved in two possible ways. One is to define a Problem

Definition Language (similar to that of Interface Definition Language of CORDA mentioned in section

3.3.3). However, this langu age would either severely limit the types of problems for which problem-solver

objects can be developed, or would require those objects t.o have almost human intelligence. T hus, it

appears that developing such language is not feas ible at this time. Another approach would be similar

to the one adopted by the Internet Protocol (section 3.2.2) and similar network standards. IP datagrams

carry various types of traffic without really knowing the contents. However, when the packets arrive to

the destination , they have to be passed to the appropriate service, each service having its own standard.

To allow this, IP includes a number in its datagram header that identifies t.hc type of service that receives

the contents. T he contents themselves are encapsulated in an IP packet without regard to their meaning.

28

This requires the sender to know the number of a receiving service. Such a requirement, however, does

not pose any problem when the service uurnbers are standardized an<l publislied. To adopt this idea to the

client-manager communication issue, the model would assign numbers to the types of problems for which

problems-solver objects are developed. T he client in this case would not have to provide the explanation

of the problem - it would only supply the arguments and the problem number. The arguments would be

encapsulated in a message t hat is attached to a problem number and sent to the resource manager. The

resource manager would not have to know which problems correspond to which numbers, it would simply

find the problem-solver object in tier three with the corresponding problem number. Then it would

retransmit the message it received from the client to the problem-solver object. The most important

benefit of this architecture is that the resource manager does not need to be redesigned every time a new

problem-solver object is developed for a new type of problem. This approach also solves the question of

how the resource manager would communicate the problem t.o the problem solver.

There is really no issue in communirat ing between tiers three and four, since the object in those t iers

that need to communicate wit.h each other are a pa.rt of a single mechanism, and would be written by a

single developer (group).

The issue of fault tolerance could bf~ solved by allowing more than one resource manager. Any given

manager would send a copy of the problem request to several other managers it knows and inform them

who the client is, and who was assigned to solve the problem. In the case that the original resource

manager dies or becomes unavailable the secondary managers would be able to step up to the bat. If

resources permit and the fault tolerance is of big importance, resource manager could also redundantly

assign the same problem to several problem-solver objects.

The issue of security can be broken up into two parts. Firstly, is t.he quest.ion of how much access the

resource owners would allow to the outside users. This can caRily be regulated by picking which objects

29

the computer will run. Since the structure of the whole model is highly modular, not all parts have to

be run on a computer to participate iu the combined distributed system. The second issue is that of

ensuring that the object on the other side is really what it says it is. This could be done by augmenting

all communication channels with public-private key encryption mechanism (section 4.1).

This section will not discuss the issues related to the design of problem-solver objects. Those are

designed to fit the particular problem they are solving and could employ a wide variety of solutions,

using CORBA, MPI, PVM, or multitude of other mechanisms. To ensure t.he compatibility with other

objects, though , this modules would haw to adhere to a certain argument passing protocol. This could

be worked out by various solver desig1wrs, since the overall system is oblivious to such details.

These are some of the main, but <'ertainly not all of the issues in dPveloping such a system. More

specific details will depend on the implementation which is outside the scope of this paper.

6 Conclusions

This paper has given a brief overview of issues a developer of a distributed system would face. It has

also given a generalized architecture of a distributed system that could be used for solving a wide array

of problems. This architecture is so far only theoretical and has not bef'n implemented by the author.

References

[1] Thomas E. Anderson, David E. Culler, and David A. Patterson. A c~e for networks of workstations:

NOW. IEEE Micro, Febuary 1995.

[2] Distributed Computing Group, Stanford University. Security in a Public World: A Survey, 1996.

30

[3] Al Geist, Adam Beguelin, Jack Donagarra, Weicheng Jiang, Robert Mancheck, and Vaidy Sunderam.

PVM: Parallel Virtual Machine - a Users' Guide and Tutorial for Networked Parallel Computing.

The MIT Press, 1994.

[4] Andrew S. Grimshaw, William A. Wulf. James C. French, Alfred C. Weaver, and Paul F. Reynolds

Jr. A synopsis of the Legion Project. Technical Report CS-94-20, University of Virginia, Department

of Computer Science, 1994.

[5] Andrew S. Grimshaw and Wm. A. Wulf. The Legion vision of a worldwide virtual computer. Com

munications of the ACM, 40(1), January 1997.

[6] Internet.com, http://webopedia.internet.com. PC Webopaedeia.

[7] Greg Lindahl, Andrew Grimshaw, Aclam Ferrari, and Katherine Holcomb. Metacomputing - what's

in it for me?

[8] Message Passing Interface Forum. MPI: A Message Passing Interf"cc Standard, 1995.

[9] Object Management Group. The Common Object Request Broker·: Ar·chitecture and Specification,

1998.

[10] J. Postel. User Datagram Protocol. Technical Report RFC-i68. Information Sciences Institute,

University of Southern California. 1980.

[11] Jonothan B. Postel. Internet Protocol. DARPA Internet Program Protocol Specification . Technical

Report RFC-791, Information Sciences Institute, University of Southern California, 1981.

[12] Jonathan B. Postel. Transmission Control Protocol. DARPA Internet Program P rotocol Specifica

tion. Technical Report RFC-793, Information Sciences Institute, University of Southern California,

1981.

31

[13] John Purcell, editor. Linux: The Complete Refer·cnce. Linux Systems Labs, 1997.

[14] Daniel Ridge, Donald Becker, Phillip Merkey, and Thomas Sterling. Beowulf: Harnessing the power

of parallelism in a Pile-of-PCs. In Proceedings, IEEE Aerospace, 1997.

[15] Thomas Sterling, Donald J. Becker, John E. Dorband, Daniel Savarese, Udaya A. Ranawake, and

Charles V. Packer. Beowulf: A parallel workstation for scientific computation. In Proceedings,

International Conference on Parallel Pmcessing, 1995.

[16] Tim Strayer. Xpress Transport Protocol specification. Technical Report XTP 95-20, XTP Forum,

1995.

[17] Andrew S. Tannenbaum. Distribttted Operating Systems. Prentice Hall, 1995.

[18] University of Calif?rnia, Berkley, http://setiathome.ssl.berkeley.edu. SETI@home: Search for Ex

traterrestrial Intelligence at Home.

32

ytes/sec Hessases up to 1H1l over LAN
1.4~07 --~~~--~~~---~~~~--~~~---....-....-....---.....-....-~~--~~

1.2e+07

1e+07

6e+06

4e+06

2e+06

.2"!l ~r) ay, :BER=1e-9 -
bi.is! dtflay, :BER=1e-6 -

'1-s delay, BER=1e-10 -
1.llls delay, 1lER=1e-6 -

o .__~~~--....-....-~--.~~~~"--....-~....---~~~--i.~~~~--....-~

0 200000

file:// A: \morozov 1. gif

400000 600000
Bytes

800000 1e+06 1.2e+06

4/25/9~

C4!;C l Ul J

tes/sec Messages ~ to 1HB over HAN
6e+06 r--------~-----,,.......---..,,.-----T""-----.

5e+06

4e+06

3e+06

0

file:// A: \morozov3. gif

200000 4()()()00 600000
B!ltes

800000

S..S del~, BER=ie-10 -
5'1s del~, BER=1e-6

10.S del~, BER=le-10 -
10rrls del~, BER=1e-6 -

1e+06 1.2e+

4/25/9~

c
0.0

0.7

0.6

o.s

0.4

0.3

0.2

0.1

0
0 200000

file:// A: \morozov2. gif

Hes:sages up to 1H11 over LAN

400000 600000
B\:ttes

800000

rag~ 1 or 1

1e+06 1.2e+

4/25/9~

- --o- - - - -

i111e (sec) Sequential vs. pseudoparallel 111atrix 111ultiplication
1400--~~...-~~-.-~~ ~~~--~~...-~~-.-~~--~~~y-~~--~~

10111s dela!:1 -

1200

1000

800

600

400

200

0 '--~~ ~~ ~~ ~~~.._~~ ~~ ~~--'--~~---~~ ~~--
450 500 550 600 650 700 750 800 850 900 950

Size (length of 111atrix side)

file://A:\morozov5.gif 412519~

	Issues in Automated Distribution of Processes Over the Networks
	Recommended Citation

	tmp.1427772319.pdf.GaOVs

