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Abstract 

Molecular dynamic simulations have been used to explore the fric

tion between two ( 110) diamond surfaces in sliding contact. In general, 

when a third-body hydrocarbon molecule is placed between two com

puter generated diamond surfaces in sliding contact, the result is a 

reduction of friction as the load iH increa.'ied compared to the same 

surfaces in the absence of third-body molecules. The size, shape, and 

alignment of the third-body hydrocarbon molecules play an essrntial 

role in the reduction of friction. Results for a system with ethane 

presented as a third-body molecule will be compared to previous the

oretical studies as well as existing experimental data. 

1 Introduction 

2 

Diamond is used because it has unique friction and wear properties. Dia

mond coatings are used throughout the industrial world, from drill bits to 

computer chips. \IVith new information about how diamond surfaces break 

down, thr industrial world could be changPCl forever; no longer would expen

sive drill bits need to be replaced or engine blocks melt due to heat. Another 

use for diamond related technology is t.hr <:rf'at.ion of synthetic diamonds. 

Synthetic diamonds could be used to protrct the shuttle from space debris 

or to withstand the high temperatures of rc-rntry[l]. 

Tri bochemistry is the interaction of chemistry and friction. Friction oc

curs whE'n two bodies slide pa.st each other. Sometimes when bodies slide 

past <'aeh other they produce debris. \,Vith thr increase of debris, the coeffi

cient of friction is increased. Scienc<' has mad<' great strides in understanding 

t.ribochemistry at the atomic level. It ha.<; hem observed in macroscopic ex

periments that when two diamond surfacps are sliding~ they initially produce 

a small amount of friction, however, as the slichng continues, the friction in

creases resulting in the breaking of bonds[2]. It has been concluded that with 

thr brraking of chemical bonds then• is thr creation of radical sitrs[2]. \Vitb 
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the creation of radical sites on both surfaces, bonds are created between the 

two surfacrs thus increasing the friction and eventually the temprrature of 

th<.> system. To fully understand what happens in this macro-experiment, thr 

experiment was simulated with the help of a computer. \~rith the computrr, 

the position of any giwn atom in the system is easily determined at any 

specific point in time[2]. 

\Vith new developments in scientific instrumentation and chemical vapor 

deposition, the growth of diamond films can now hr understood at the micro

scopic level[3]. Thus, the advances in ··wearless'' diamond surfaces arr just 

around the corner with the help of new s<:i<'ntific instruments like the surface 

force rnicroscope[4] and the quartz crystal microbalance[4]. On the theorrti

cal level of developments, molecular dynamics arc being used to explain the 

wear and dis.tortion of a diamond surfacr whrn sliding occurs. [5] 

In prrvious experiments, the friction and wear of a diamond surface hab 

bern explored using molecular dynamics. Thr surface of diamond that has 

been the main subject of study is thr ( 111) surface; therefore, thr focus of 

this paper is the (110) surfacr[6]. \.Yith rach additional diamond surface that 

is explored with or without the addition of a third-body molecule, the results 

bring us one step closer to developing a ''wrarlrss" surface. [4] 

2 Methodology 

2.1 Molecular Dynamics 

~1olecular dynamics simulations are used "to examine the friction brtwrrn 

two surfaces placed in sliding contact.[5]" f\lolecular dynamic simulations an• 

used to gain insight into what happens at the molecular level when atoms or 

molecules come in contact with rach other. 
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2.2 Simulations 

Molecular dynamic simulations were used in this study to examine the (110) 

hydrogen terminated diamond surface. Each surface is composed of exactly 

176 carbon atoms and 16 hydrogen terminating atoms. The atoms in each 

diamond surface are divided into three regions: rigid, thermostat: and dy

namic. The rigid layer is located at the other end from the hydrogen ter

minated carbons (the dynamic layer). The thermostat layer is located in 

bet,veen the dynamic and rigid layers (figure 1). The dynamic layer also 

includes the third-body molecule that is inserted between the two surfaces 

if a third-body molecule is present. The diagrams in the appendix show the 

two diamond surfaces and the third-body molecule. In the figures the black 

atoms are the carbon atoms of the diamond lattices. The white atoms are 

the hydrogetl atoms that terminate the diamond surfaces. The third-body 

molecule is in between the two surfaces. The molecular formula for ethane is 

C2 H6 . The two carbon atoms of the ethane molecule are represented in blue, 

while the hydrogen atoms are represented in red. The rigid layer is held fixed, 

thus allowing no movement. \:Vith each additional simulation, the diamond 

lattices are moved closer together to increase the load, thus, increasing the 

friction. The thermostat layer allows for movement; however, the velocities 

are reset to allow heat to be dissipated from the system. The dynamic layer 

allows for free movement. ·with the integration of )J"ewton's equations of mo

tion, the forces can be determined in each direction (Fx,F_?J,Fz). Using this 

data the graphs can be generated that will show the normal and frictional 

forces for each simulation. The rigid layer is the layer that is moved in a 

simulation; however, the atoms remain at a constant relative distance. The 

way in which a simulation is performed is by holding one diamond surface in 

place and sliding the other in a given direction subject to periodic boundary 

conditions. Each simulation reveals the force generated in each direction and 

the friction coefficient that was measured as sliding occurred. 



2.3 Potential Energy Function 

The model was developed by determining an empirical potential energy func

tion that explains the chemical bonding of hydrocarbons. The function must 

reproduce the intra-molecular energetics and bonding, "yield realistic ener

getics and bonding for structures, and allow for bond breaking and forma

tion." 

2.4 Tersoff Bond-order Expression 

The Tersoff bond-order expression was used in the current molecular dynamic 

simulation. The A bell-Tersoff[7] formula is: 

contribution of E is written as: 

j and i are neighbors. 

Et = z]l'R(riJ- Bij * VA(rij)] 
Jt-i 

VR(r )4 and V4 (r) are paired repulsion and attractive interactions. 

Bij is a many-body coupling between atoms i and j. 

The first approximation of Bij is: 

o- is dependent on the system. 

This gives the relationship between bond length, binding energy and coordi

nation for systems containing carbon-carbon bonds. 

The major problem with this expression is that the expression does not 

take into account the intermediate bonding situations. The Abell-Tersoff 

expression assumes the "near-neighbor interactions combined with the sum 

over atomic sites results in non-physical behavior[7]." Another problem is 

non-physical behavior when double bonds are explored-both conjugated and 
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non-conjugated. These problems can be solved through a new equation which 

results in the binding energies for hydrocarbons. 

whrre 

Eb = L L [VR(rij- Bij * V1(rij)] 
~ J(>i) 

The repulsive and attractive terms arE>: 

The results of the final equation were closr to observed experinwntal 

values for hydrocarbons meaning that results generated from thr comput€'1' 

simulations are very close to the experinwntal value [7]. 

3 Results and Discussion 

3.1 Previous Results 

·when comparing results of the insertion of third-body molecules between 

diamond surfaces, the results are almost always the same. Hydrogen atoms 

from the surfaces bond, thus. producing hydrogen gas. Another option is 

the third-body molecule breaking apart and then binding to the diamond 

surface thus creating more friction. In the case of placement of two ethyl 

groups on one of the surfaces, thr result was the formation of hydrogen 

gas and molecular debris[8]. Another phenomenon that was observed was 

the shearing of hydrogen atoms attached to the surface. After methane, 
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ethane, methyl radicals, ethyl radicals, and isobutane molecules were placed 

between the two diamond surfaces, it was concluded that the presence of 

a third-body molecule reduces the average frictional force compared with 

that of just two diamond surfaces[8]. This is a result of less interaction 

between the hydrogens of opposing surfaces. In a system with no third-body 

molecules, the hydrogens have large intNactions that cause the carbon atoms 

of subsequent layers to be affected. If a third-body molecule is inserted, the 

interaction of hydrogen molecules is reduced[8]. 

3.2 Results 

Molecular dynamic simulations have been used to explore the friction pro

duced when two (110) diamond surfaces slide past each other. These simula

tions have been performed at 300 K and at a sliding speed of l.OA/ps. The 

results vary based on the distance the surfaces are from one another. 

In figure 2, the friction coefficients are plotted as a function of average 

normal load per rigid-layer atom for two systems. The two systems are a (110) 

diamond system with hydrogen-terminated carbons and a (110) diamond 

system with ethane inserted between the two diamond lattices. The data 

shows that with the addition of ethane the coefficient of friction is smaller as 

the load increases compared with that of the hydrogen terminated system. 

Thus, the addition of a third-body molecule helps to reduce the coefficient 

of friction in the (110) diamond system. 

When exploring the force versus the sliding distance per unit cell, the 

interaction of molecules can be understood. The normal force, Fz, and the 

frictional force, Fy, are shown in figure 3. The maxima are the result of 

the increase of the repulsive interactions of the hydrogen atoms of the two 

diamond lattices. This result is due to the fact that the hydrogen atoms 

of the two surfaces have passed by each other. Thus, the minima arc the 

result of the decrease of the repulsive interactions of the hydrogen atoms. 

This decrease of repulsive forces is a result of the hydrogen atoms being 
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perpendicular to the other hydrogen terminated surface. \Vith the increase 

of the normal load, the mechanical excitation also increases. If the mechanical 

excitation increases, so does the friction coefficient[4]. 

Figure 3 is very similar to the graph (figure 6) of simulation B. The graph 

(figure 3) shows the ethane molecule moving freely between the two diamond 

surfaces. The two diamond surfaces at this point are too far apart to cause 

any significant hydrogen-hydrogen repulsive forces. At this point there is 

no significant difference between the friction produced in a system with a 

third-body molecule and one without. 

Figure 7 as compared with figure 4 shows the surface of the two diamond 

lattices coming closer together. The friction force does not show any great 

changes between the two simulations (figures 3 and 6) . The frictional force is 

around 0-0.0f throughout the whole simulation. In figure 7 it is easy to see 

how the frictional force is increased by the contact interaction of the ethane 

molecule and the hydrogen surface of the diamond lattice. Figure 8 shows 

the ethane molecule floating between the surface. There is a great distance 

between the two diamond lattices, thus, there are few hydrogen-hydrogen 

repulsive forces. 

In simulation C (figure 9) the frictional force has increased as compared 

with that of simulation B (figure 6). The surfaces of the diamond are even 

closer than they were before. The hydrogen-hydrogen repulsive forces are 

starting to play a bigger role in the overall frictional force that is being 

produced. In figure 10, the hydrogens of the ethane molecule are starting to 

get closer to the diamond surfaces. If compared with figure 11 the ethane 

molecule is interacting less with hydrogen atoms on the lattices as before. 

The ethane molecule throughout this entire simulation is still moving very 

freely as compared with that of higher load simulations. 

Figure 12 looks very similar to that of figure 6. The overall frictional 

force is not increasing greatly through the previous trials. It appears that 

the surfaces of the diamond are not close enough to make a great deal of 
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difference in the results. The high frictional force figure 14 shows a few 

hydrogen-hydrogen repulsive interactions. The low frictional force shows a 

very similar result to figure 11. The third-body molecule at this particular 

time in the simulation process is not playing a large role in the decrease of 

friction like it will later in the process. 

The variation of the frictional force becomes apparent in simulation E 

(figure 15). It appears that the ethane molecule is starting to get stuck peri

odically when the two diamond lattice slide past one another. The surfaces 

are now close enough to have some hydrogen-hydrogen repulsive forces. Fig

ure 16 shows the ethane molecule interaction with the hydrogen termination 

of the diamond surfaces. In figure 17, the ethane molecule appears to have 

a few interactions. Even though the ethane molecule is starting to have a 

greater role i~ the overall frictional force generated at two diamond surfaces, 

this simulation does not distort the ethane molecule so it is still considered 

a low load simulation. 

In simulation F, there is still no distortion of the ethane molecule. The 

graph (figure 18) is starting to show a greater fluctuation in values as com

pared with that of figure 15. One could conclude that the surfaces are causing 

the ethane molecule to get trapped more often and with a greater time pe

riod when it is trapped. In figure 19, the ethane molecule is experiencing 

increased interactions with the hydrogen-terminated diamond surfaces. Im

mediately after the interactions, the ethane molecule slips into a valley; thus, 

resulting in a decrease in the overall frictional force of the system. 

The graph (figure 21) in simulation G shows a significant oscillation at 

the beginning of the simulation. When the ethane molecule is in the valley, 

the friction coefficient is significantly lower. If the molecule interacts with 

the hydrogens on the surface of the diamond, then the friction is increased 

because of the hydrogen-hydrogen repulsive interactions. 

In figure 24, the graph shows the force per sliding distance of a low load 

system. At its maxima the ethane molecule shows almost no deformation as 
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compared with that of figure 43. The molecule appears to move without too 

many molecular interactions from the hydrogen terminated diamond surface 

in both figure 25 and 26. \Vith the great distances between the surfaces 

there is relatively little hydrogen-hydrogen repulsive forces acting between 

the surfaces. 

In figure 28, the ethane molecule experiences a great amount of defor

mation as compared with that of figure 25 or 26. The surfaces of the di

amond lattices are closer together, thus affecting the ethane molecule and 

the hydrogen-hydrogen repulsive forces . In figure 29 one of the two carbon 

atoms of the ethane molecule has had its hydrogen atoms distorted. 

Figure 30 shows a sharp increase in the normal force followed immediately 

by a minima. This is caused by the ethane molecule getting caught when the 

two diamond.surfaces slide past each other (figure 31). The ethane molecule 

has fallen into a valley between the hydrogen terminated diamond surfaces 

(figure 32). This results in the reduction of interaction as shown in figure 30. 

According to figure 35 the ethane molecule continues to be moved from 

a valley to being trapped on hydrogen atoms. Figure 34 shows the molecule 

trapped on a neighboring carbon atom. Figure 33 shows a great deal of 

oscillation of the normal force and the frictional force . 

In figure 36, the graph shows that the molecule from the beginning gets 

stuck in a valley (figure 38), then only a few unit cells later it is causing a 

great deal of hydrogen-hydrogen repulsion as show in figure 37. The large 

peak is the result of the ethane molecule changing its orientation between the 

two diamond lattices. There is still no significant deformation of the ethane 

molecule as compared to later simulations. 

In figure 41, the surfaces of the diamonds are closer together; thus, the 

ethane molecule will be less likely to be swept along as the surfaces slide past 

each other. The ethane molecule oscillates (figure 39) greatly in this simula

tion as compared with simulation L (figure 36). At the minima, around four 

unit cells, the ethane molecule is right in the middle of the two surfaces. At 
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the point of greatest repulsive forces the ethane molecule is distorted (figure 

40) and right in the middle of hydrogen-hydrogen repulsive force interactions. 

This simulation marks the beginning of the high load simulations due to the 

great distortion of the ethane molecule. 

Figure 42 shows even greater evidence of the high load and distortion of 

the ethane molecule. A great repulsion forces the ethane molecule is distorted 

causes it to be planar (figure 43). There is great strain on the bonds of the 

ethane molecule (figure 43); yet, if the molecule is in a valley, the bonds 

return to their equilibrium position (figure 44). The greater the strain on 

the bonds the more likely the ethane molecule is to break apart. 

In this simulation the maximas and minimas are more gradual. It appears 

to show the molecule moving and then staying in the location between the 

surfaces for ~ longer period of time. The ethane molecule appears to be 

moving more perpendicular to the surface of the diamonds (figure 46) under 

the high frictional forces. 

With the increase in the load, the forces are changing even more dras

tically now. However, the amplitude between the changes is more constant 

now. At high frictional forces, the ethane molecule is perpendicular to the 

two diamond surfaces causing even more hydrogen-hydrogen repulsive inter

actions (figure 49). At lower frictional forces the molecule is deformed but 

in a valley on the surfaces; this results in less molecular interactions. Also, 

after the ethane molecule goes through the high frictional forces one of the 

hydrogen atoms from the surface of the diamond replaces one of the hydrogen 

atoms on the ethane molecule. 

Figure 51 looks normal just like all the other trials but it is not. The 

ethane molecule dissociates in this simulation. The ethane molecule's carbon-

carbon bonds break and the methyl radicals binds to the surfaces (figure 53). 

\Vhen the molecule binds to the diamond surfaces, the friction is greatly 

reduced. The friction is increa..'ied, however, when the two ethane carbons 

plus hydrogens termination come in contact with each other. 



12 

Simulation R does not fit the pattern of any of the other trials. vVhen the 

molecule undergoes bond dissociation, (figure 56) the friction coefficient stays 

the same until the very end when it decreases again. It is almost as though 

the molecule binds to the diamond surfaces and then causes the surfaces to 

have even greater repulsive interactions. The friction is significantly higher 

in this simulation. At the minima the ethane molecule is in tact (figure 55). 

\;\/hen the methyl radicals bind to the two diamond lattices, the radicals 

never recombine to form an ethane molecule. It bonds to the surfaces for the 

remainder of the simulation. 

The results generated from this work closely resemble the results gener

ated on other diamond surfaces[2]. It can easily be concluded that with the 

addition of a third-body molecule to a system the friction coefficient will be 

reduced whe11 compared to a system without the molecule. The discovery of 

the changes of friction at the molecular level will help to further understand 

how to create "wearless'' surfaces. 

4 Conclusions 

:Vlolecular dynamic simulations were employed to study the friction produced 

at the atomic level of a (110) diamond surfaces. The two surfaces were in 

sliding contact and thermostatted at 300K. The results that were collected 

were compared with those of other diamond surfaces. It was found that 

the addition of a third-body molecule does in fact reduce the friction of the 

overall system as compared with that of a non-third-body molecule system. 

These results are consistent to those of other diamond surfaces that have 

been studied[4] . 

It was hypothesized that the addition of a third-body molecule would 

lower the total frictional force produced in the system. This was in fact the 

case. \;v'"ith the decrease in the distance between the surfaces, the third-body 

molecule was distorted from its original shape leading ultimately to the bond 
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dissociation in the molecule. \\Then this occurred the friction decreased for 

a short period of time. Later in the simulation, the third-body molecule's 

resulting radicals bonded to the surface of the diamond. It was concluded 

that the magnitude of the mechanical excitation depends on the molecule's 

shape and orientation during sliding. Another interesting conclusion that 

can be drawn is that when a third-body molecule is stuck in a "valley" on 

the surface of the diamond, the coefficient of friction reduces. 
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//**************************************************************************** 
I /Author: Catherine Manning 
//Description: This program takes a data file and changes the atoms into 
//the correct color. Hydrogen atoms are blue and carbon are red. 
//*************************************************************************** * 

I /Libraries 
#include<stdio. h> 
#include< string. h> 

//**************************************************************************** 
//Main program 
//************************************************************************ **** 
int main () { 

char line[lOO] 1 blank[4] //Line is the number in xyz direction 
int klilj; //Counters 
int frames=O; //number of frames 
int atoms=O; //number of total atoms 
int type=O; //hydrogen or carbon 
char x[25] //number in X direction 
char y [25] //number in y direction 
char z [2 5] //number in z direction 

//********************~******************************************************* 

scanf ("%d" 1 &frames); 
scanf ("%d" 1 &atoms); 

printf ( "%d \n" 1 frames) ; 
printf ( "%d \n" I atoms) ; 
i=l; 
j=l; 
k=l; 
while (i<=frames) { 

j=l; 
while (j<=l92) { 

} 
k=l; 

scanf ( "%s "I &x) 
scanf ( "%s "I &y) 
scanf("%s 11

1 &Z); 
scanf ( "%d" 1 &type); 
printf ("%s %s 
j++; 

while (k<=8) { 
scanf("%s ",&x); 
scanf ( "%s ", &y); 
scanf ( "%s 11

, &z); 
scanf ( "%d" 1 &type); 
if {type==l) 

} 

type=l9; 
else type=14; 
printf ("%s %s 
k++; 

j =l; 

//determines for number of frames 
//determines for number of atoms 

//print number of frames 
//print number of atoms 

//loop that prints first surface 

%s %d\n" 1 x,y,z,type); 

//colors the third body molecule 

//if H then blue 

//else Cis red 
%s %d\n" 1 X 1 Y1 Z 1 type) 

RILEY -HICK\NGBOTHAM LIBRARY 
OUACHITA BAPTIST UNIVERSITY 



while (j<=192) { 
scanf ( 11 %S 11

, &x) i 
scanf ( 11 %S 11

, &y) i 
scanf( 11 %s ",&z) i 
scanf ( 11 %d", &type) i 
printf ("%s %s 
j++; 

} 
if (i!=frames) { 

} 

scanf ( 11 %d",&atoms) i 
printf("%d \n 11

, atoms); 

i++; 
} 

//prints the second surface 

%s %d\n 11
, x,y,z,type); 

//prints number of atoms in frame 

//end of while loop 
//end of program 



//Author: Catherine Manning 
/ /Description: This program converts from normal format to moviemol 
//*************************************************************************** 

//** ************************************************************************* 
//Libraries 
#include<stdio.h> 
hnclude<string.h> 

#define MAXSTR 500 
void convert () ; 

/ / *************************************************************************** 
int main () { 

char line[lOO] ,blank[4]; 

int atomic[392]; 
int a,b,c,d,x,y,z,i,j; 

//line is the xyz 
//blank is the type of atoms 
//type of atoms 
//counters 

for (j=O;j<3;j++) { //gets first three lines 
fgets (line,MAXSTR,stdin); 

} 

for (c=O; C<394; C++) 
atomic[c]=O; 

d=O; 
for (y=l; y<l4; y++) { 

for (x=l; X<31; X++) { 
scanf ("%d",&a); 
if (a==l) 

a=6; 
else 

a=l; 
atomic[d]=a; 

d++; 

for (i=l; i<3; i++) { 
scanf ( "%d", &a); 
if (a==l) 

atomic[389+i]=8; 
else 

atomic[389+i]=l; 
} 

fgets(line,MAXSTR,stdin); 
Z=O; 
while (z<392) { 

fgets(blank,3,stdin); 
fgets(line, 100, stdin); 
line[strlen(line)-1]=0; 
Z++i 

//initialization 

//puts the correct atoms type into the array 

//gets xyz coordinates 

//prints the final result 

printf("%s %d\n",line,atomic[z]); 
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Ethane Movement- A-Trial Low Frictional Force 

<= Y-Direction=> 



0.1 

~ 0.08 
e 
a 

0.06 ., ., 
~ 

:z: 
0.04 .:: 

w 
-:. I 
IJ 0.02 .. 
a ... 

0 

-0.02 

0 

Figure 6 

Force Per Atom vs. Sliding Distance 
(Y·Direction) B-Trial 

I 

I I 

2 4 6 8 

Sliding Distance (unit cells) 

Frictional Force 

Nor mal Force 



Figure 7 

Ethane Molecule Between Surfaces 
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Force Per Atom vs. Sliding Distance 
(Y·Direction) C·Trial 

0.2 ..,....------------~ 

0.15 

0.1 
I ___r ~ ~ ~- I I 

0.05 I I I 

0 

-0.0 5 -+------,.----.,.------.-~-_..,. 

0 2 4 6 8 

Sliding Distance (unit cells) 

Frictional Force 

Nor mal Force 



~ 
·~ 

t> 
0 ·= 0 

I 

N u 

Figure 10 

Ethane Molecule Between Surfaces 
Ethane Movement- C-Trial High Frictional Force 

<= Y-Direction=> 



Figure 11 

Ethane Molecule Between Surfaces 
Ethane Movement- C-Trial Low Frictional Force 

O
J 

. 

I 

<= Y -Direction~ 



0.18 

0.16 
~ 0.14 e 
a 0.12 
M ., 

0.1 ~ 

z 
.: 0.08 

w 
.:. 0.06 ... 
~ 0.04 a .... 

0.02 

0 

-0.02 

igure 12 

0 

Force Per Atom vs. Sliding Distance 
(Y·Direction) [).Trial 

----Frictional Force 

Nor mal Force 

2 4 6 8 

Sliding Distance (unit cells) 



Figure 13 

Ethane Molecule Between Surfaces 
Ethane Movement- D-Trial Low Frictional Force 

<= Y-Direction=> 



Figure 14 

Ethane Molecule Between Surfaces 
Ethane Movement- D-Trial High Frictional Force 

<= Y-Direction~ 



~ 

E 
a 
rl/ ., ... 
:z: 
.: 

w 
-:. ... .. 
a .... 

Figure 15 

Force Per Atom vs. Sliding Distance 
(Y·Direction) E·Trial 

0.2 ~-----------------

0.15 

0.1 I tr 
..,..__...., 

I ·-

I I I 

0.05 

0 

-0.05 -+----------.....,.-----___,. ____ _, 
0 2 4 6 8 

Sliding Distance (unit cells) 

Frictional Force 

Nor mal Force 



Figure 16 

Ethane Molecule Between Surfaces 
Ethane Movement- E-Trial High Frictional Force 

0 

<= Y-Direction~ 



u 
0 

•1""4 
+J 
(.) 
0 ·= 0 

I 

N 
JJ 

Figure 17 

Ethane Molecule Between Surfaces 
Ethane Movement- E-Trial Low Frictional Force 

<= Y-Direction=> 



,.. 
e 
a 
~ 

" ... 
z: 
.:: 

w 
.:a 
lJ .. 
a 

a.. 

Figure 18 
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