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Our solar system contains more activity and complexity than 

can be seen through a telescope. One such "invisible " phenomenon 

is the solar wind, created by a steady stream of part i cles 

blasted away from the sun in all directions . The sun's donut-

shaped magnetic field lines channel this stream . Particles 

moving along the field lines perform an intricate helical dance, 

with ions winding one way and electrons the other . 

The solar wind shapes and is shaped by the magnetic fields 

of the planets and the sun. If left undisturbed by outside 

influences , the earth's magnetic field, like the sun's, would 

resemble a donut surrounding the earth (Fig. la). However, the 

s o lar wind constantly streams around the earth, and its pressure 

compresses the earth's magnetic field in front and elongates it 

in back, much like a comet's tail (Fig. lb). This is known as a 

planetary bow shock. 

Physicists have found that certain types of electromagnetic 

waves, c alled Alfven waves, are formed in planetary bow shocks , 

near comets, and even within the solar wind itself (i). The 

waves, which are nonlinear, travel along the solar wind's 

magnetic field lines . If the field lines are represented by a 

stretched rubber band, Alfven waves are represented by the wave 

that travels the length of the rubber band when it is plucked. 

Since about 1968, scientists have sought a way to describe 

these waves mathematically (~) . They have tried several 

e quations, one family of which, the Derivative Nonlinear 

Schrodinger (DNLS ) equation and its offshoots , has proven 

e specially useful . 
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This paper will explain the origin of the DNLS equation in 

plasma physics, show its relationship to simpler wave equations, 

discuss the solution to the DNLS equation, and explain the 

numerical techniques used to find its eigenvalues. Eigenvalues 

are mathematical constructs which correspond to physically 

significant observables, such as a wave's velocity or amplitude . 

All of these topics will then be brought together to explain the 

new mechanism for phase steepening that was discovered in the 

course of the research by examining the DNLS equation's 

eigenvalues. The type of phase steepening explored by this 

research may serve to explain why only one of two different types 

of Alfven waves have been observed in satellite data . 

A plasma, as used here, is an electrically neutral, highly 

ionized gas composed of ions, electron, and neutral particles. 

It is effectively a state of matter that is distinct from solids, 

liquids, and normal gases. The solar wind, since it is comprised 

of ions and electrons, can be treated as a plasma. Waves in a 

plasma are well approximated by the formulas for magneto­

hydrodynamic (MHD) waves. Ideal MHD waves depend on seven 

variables, and thus are described by seven independent equations. 

These equations have been developed in the study of fluid 

dynamics (~ : 3.1), and roughly correspond to the conservation of 

mass, momentum, and energy for protons and electrons, with 

Maxwell's electromagnetic equations added to them . The ideal MHD 

equations are strongly nonlinear and do not take into account 

dispersive steepening of waves, which will be explained later. 

If dispersion is taken into account and some simplifications 
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made, the waves can be modeled using the Derivative Nonlinear 

Schrodinger (DNLS) equation. The DNLS equation has a weaker 

nonlinearity than the ideal MHD equations, yet is somewhat valid 

even for systems with strong nonlinearity. 

The simplest types of waves are linear waves. In one 

dimension they can be described by the mathematical formula 

ut + cux = 0 

which is the most general form of what is known as a harmonic 

wave. Its shape never changes ; it moves forward with a constant 

speed of c . 

The linear wave equation does not take into account 

dispersion, an effect found in all physical waves. Burger's 

equation adds a term for dispersion, which depends on the wave's 

second spatial derivative: 

The dispersion term vu= seems rather ad hoc, but it appears to 

model effects which are found in nature . Over time , friction and 

other forces cause any single wave to spread out , or disperse. 

The dispersion term mimics this effect by making the mathematical 

waves spread out. The nonlinear term uux leads to shocks within 

waves--higher amplitudes move faster, causing the waves to 

steepen {Fig. 2). The crest of the wave moves forward, forming a 

more vertical wave front. 

Solitons form when nonlinearity and dispersion compete 

within a wave. Nonlinearity tends to steepen waves, while 

dispersion tends to spread waves out . Solitons are essentially 
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localized nonlinear wave packets. They have a unique property in 

that one soliton can interact with another, yet retain its 

individual characteristics . Soliton speed depends on amplitude: 

a "taller" soliton will overtake a "shorter." When the two 

solitons pass through each other , they each suffer only a mild 

phase shift; the waves are slightly ahead of where they were 

expected to be . No changes occur in their amplitude, scale­

length, or speed (~: 9.1). The Korteweg-deVries (KdV) equation 

develops solitons over time: 

The DNLS equation also forms solitons , as it balances 

steepening and finite ion inertia dispersion (~ : 10.1) for weakly 

dispersive quasi-parallel Alfven waves (2) . The KdV equation has 

eigenvalues which are real numbers; however, the DNLS equation's 

e igenvalues are compl ex . The DNLS equation takes the form of 

u 1- + ( u I"- u) ,, = i u ,,,, 

The DNLS equation does not take into account finite electron 

inertia dispersion, onl y finite ion inertia dispersion . 

Combining the DNLS equation with Burger ' s equation does take that 

dispersion into account. The DNLS-Burger's equation has the 

properties of both of its parent equations: 

Its eigenvalues are also complex . This research examined the 

evolution of the DNLS - Burger ' s equation's eigenvalues over time, 
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in order to find a possible mechanism for phase steepening. 

All of the techniques described in this thesis, which were 

applied to the DNLS-Burger's equation for research purposes, also 

apply to the DNLS equation. Due to these considerations , the 

remainder of this thesis will discuss the DNLS equation. 

The DNLS equation has been examined using the inverse 

scattering transform (IST). The DNLS equation and its offshoots 

are not directly integrable due to their nonlinearity. However, 

t he IST allows the DNLS equation to be integrated indirectly by 

finding a linear scattering formula for the otherwise nonlinear 

DNLS equation . By integrating the DNLS equation, its eigenvalues 

may be found. Kaup and Newell (Q) discovered the appropriate IST 

scattering problem for the DNLS equation: 

0 
ox 4>(.A ; x , t) = D(.A ; x, t )<Ii 

where qi is a 2 x 2 matrix. The solutions of the above matrix are 

known as the Jost functions, qi±. The two Jost functions are 

linearly related by a scattering matrix S: 

where 



Granade 7 

The eigenvalues of the DNLS equation occur where S11 (A;t) is zero 

The function S11 (A;t) is defined in the limit as x 

approaches infinity as 

To integrate this function numerically, it must be divided into a 

real and an imaginary component: 

As stated earlier , the eigenvalues of the DNLS occur where 

S1 : (A;t), both the real and the imaginary parts, is zero. 

Why use the IST? Because it is the simplest and most 

natural way of expressing the nonlinear character of the DNLS 

equation . The Fourier transform, a long-established technique 

for analyzing waves, is linear. Fourier analysis produces linear 

harmonics which are the most natural way to characterize a linear 

system . However, due to the nonlinear behavior of the DNLS 

equation, harmonics produced by Fourier analysis vary widely over 

time. 

Instead, a complex nonlinear wave can usually be described 
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as the superposition of a few solitons. The solitons will not 

vary as widely over time as Fourier harmonics will. The IST is a 

soliton transform, and thus is well-suited for use with a 

nonlinear wave (~) 

The DNLS equation has so-called "one-parameter" solitons, 

solitons in which there is a relationship between their amplitude 

and their speed . 

bright and dark. 

There are two types of one-parameter solitons: 

Bright solitons have an amplitude u greater 

than the background magnetic field strength u 0 . Dark solitons 

have an amplitude u < u 0 (2 : 14) 

The DNLS equation also has solitons which depend on two 

parameters and are thus called two-parameter solitons. They coil 

through space , and, when graphed, look much like a spring. The 

second parameter specifies in part how tightly wound the "spring" 

is. All one-parameter and two-parameter solitons correspond to 

an eigenvalue; finding the eigenvalues effectively finds the 

solitons. The behavior of the eigenvalues is mirrored by the 

behavior of the solitons. 

We integrated the DNLS equation and examined the evolution 

of the its eigenvalues through time using computer -modeled 

numerical analysis. This numerical analysis utilized numerical 

approximations instead of pure mathematical solutions. Any 

numerical approximation tries to minimize numerical error . Over 

t ime , many techniques of minimizing errors have been developed. 

These techniques are more easily explained using simpler 

equations than the DNLS equation. 

One of the simplest partial differential equations is 
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which is the equation for a harmonic wave. The easiest way of 

numerically approximating the above equation's evolution through 

time , a mathematical 11 b rute-force 11 method, is by choosing a small 

6t and 6x to replace the inf initesmally small bt and ox and by 

making an array of u's : 

(1) 

The subscripts of u indicate changes over space; the superscripts 

of u indicate changes over time. 

John von Neumann developed a method of determining whether a 

numerical approximation will become unstable, or "blow up, 11 over 

time, now known as von Neumann analysis. He made the 

substitution 

n s::n e ikj ax 
U j '> 

and then solved for~· A numerical method is unstable where the 

absolute value of ~ is greater than one . 

Making the substitution into the approximation (1) and 

solving for ~ gives: 

1 - i c ll.t sin (k ll.x) 
ll.x 

No matter what value is chosen for the wavenumber k, the absolute 

value of ~ is greater than one. Specifically, at all 
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wavelengths , the equation increases exponentially; the 

approximation is numerically unstable. 

The Lax method prevents some of this instability by 

averaging the spatial values of u used. It adds a term to damp 

the equation: 

n+ 1 n flt C ( n n ) 1 ( n n n ) u J· uJ· - -- u · 1- u · 1 + - u · 1 - 2u · + u · 1 2 flx J• J 2 J' J J 

If u, becomes much larger than its neighbors uJ_1 and u j+l' then 

the damping term is negative, pulling the next value of uJ back 

down . Applying von Neumann analysis, ~ for this equation is 

I~ !S i if 

cos k flx - i c flt sink flx 
flx 

c!t < 1 (the Courant condition ) 

If the Courant condition is satisfied , then all wavelengths are 

damped, except as 1/k approaches infinity. An increase in 1/k 

corresponds to larger wavelengths, so that the practical effect 

is that long wavelengths are only weakly damped , while shorter, 

more unstable waves are more greatly damped. 

The Lax method is effective because it introduces artificial 

smoothing , which tends to disperse waves. The averaging 

introduced by the Lax method has the same effect as dispersion. 

This means that the Lax method cannot be used with Burger's 

equation, as the equation already has a dispersion term, vuxx· 

This dispersion term would unsuccessfully compete with the 
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dispersion introduced by the Lax method. Nor can this method be 

used with the DNLS equation, since the Lax dispersion would 

override the DNLS equation's built-in dispersion . 

Instead of trying to fix the brute-force method by adding o r 

subtracting arbitrary terms , more sophisticated numerical 

techniques are employed. One such category of methods is the 

c ategory of predictor-corrector methods. Predictor-corrector 

methods are based on the fact that any integral 

X n 

Y ( X) = Y n + J f (X I , y )dX I 
x 

can be approximated by a polynomial 

_ hi( I I I ) Yn+l - Yn + f3oYn+l + f31Yn + f32Yn- l + ··· 

where h' is the numerical stepsize ~x between successive y's. I f 

~0 is zero, the method is explicit; otherwise it is implicit. 

The f irst s t ep of predictor- c orrector methods is the predic tor, 

o r explicit, step, in which ~o is set to zero so as to find an 

initial value for Yn+i • That value of Y n+i is then used in the 

next step, the corrector step, in which ~o is nonzero. After 

eac h c orrector step, Y n +i is closer to its actual value. Many 

corre ctor steps can be used; however, a point of diminishing 

r e turns is eventually reached (~: 740-741 ) . 

Finding the proper values for the ~ coefficients is a matter 

o f t rial and error involving no little amount of serendipity. To 

s ome extent it is magical; no one is sure why a given set of 

coeffic ients works while another does not . One of the more 
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successful predictor-corrector methods is the Adams-Bashforth-

Moulton scheme. The third-order case, which was used in this 

research, is 

for the predictor step and 

for the corrector step. 

Using the Adams-Bashforth-Moulton predictor-corrector method 

as part of a computer program, we integrated S11 ( A) and graphed 

the sign of its two parts at different A on the complex plane, 

which is a Cartesian coordinate plane in which real values run 

along the x axis and imaginary values run along the y axis. In 

the computer program, four colors were assigned to the different 

signs of S11 : green if both the real and imaginary parts of S11 

were positive, blue if the real part was positive and the 

imaginary part was negative, and so on. At each point on the 

complex plane, S11 was calculated and the proper color was 

plotted (Fig . 3a). The colors are grouped together, forming 

regions. Where the colors c hange, the sign of at least one of 

the two parts of S11 has changed; in other words, either part or 

all of Su has passed through zero. Therefore, where four color 

regions intersect, Su is zero, and an eigenvalue of the DNLS 

equation is located there (Fig. 3b). We are interested in the 

behavior of the eigenvalues; the values of S11 allow us to find 
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and record the eigenvalues and to see how they behave over time. 

Previously, in Wyller and Mj0lhus (2) and in Wyller et al. 

(10), the motion of a single complex eigenvalue in phase space 

was calculated from perturbation theory. It was found that the 

eigenvalue would, in general, travel in a counterclockwise circle 

which passes through the origin (Fig. 4) . A numerical analysis 

of the eigenvalue showed that the results of the numerical 

solution and the idealized mathematical solution agreed well in 

regions III and IV, deviated slightly from each other in region 

II, and bore little resemblance to each other in region I. The 

numerical solution's deviations from the mathematical model 

indicate where non-soliton components of the wave develop, 

because the model assumes that any non-soliton component which 

develops is negligible and thus can be ignored (10). 

However , what is the motion of eigenvalues which lie along 

the real axis? Take the case of a circularly polarized pulse: 

x>L 

IXI < L 

x< - L 

We assumed that the pulse was traveling in a straight line, so 

that ¢0 would be zero . In addition, in order to make the 

equation continuous, the conditions b 0=b1 , ¢1 =0, and k·L=2~·n had 

to be met. Hamilton, Kennel, and Mj0lhus (11) showed that, in 

the weakly stable region (0 < k < b 1
2 / 2), there will be two 

strings , or trains, of one-parameter solitons along the real 

axis, one bright and one dark. As the wavenumber k increases and 
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nears b 1
2 /2, the l eading eigenvalues of the two trains will be 

found closer and closer to each other. At the limit of the 

weakly stable region, the two solitons will coalesce, leaving 

only one t wo-parameter soliton in the complex plane (Fig. 5). 

This coalescence will continue in the weakly unstable region 

(b12 /2 < k < b 12 ) 

Increasing the wavenumber k makes the Alfven wave , which 

resembles a spring when graphed, coil tighter and tighter. The 

distance between two successive "coils" of the wave decreases-­

the "spring" is more tightly wound. This increase in k is known 

as phase steepening . According to Hamilton, Kennel, and Mj0lhus , 

the increase in k is accompanied by the coalescence of the two 

one-parameter trains into one train of t wo-parameter solitons 

(11) 

The computer program showed that this coalescence can occur 

dynamically as time progresses. Coalescense has been linked to 

phase steepening (11) . Thus, phase steepening also occurs 

dynamically. This indicates that dissipation has the effect o f 

modifying the wave's initial profile in such a way that the 

wavenumber k increases with time . 

In addition, coalescense removes bright and dark soliton 

trains, converting the trains into two-parameter solitons . One ­

parameter solitons correspond to nonlinearly steepened waves, 

whereas two-parameter solitons correspond to phase steepened 

waves . When observational data has been taken of Alfven waves, 

only phase steepened waves have been seen , not nonlinearly 

steepened waves (12) . Coalescense may be able to explain why 
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only waves corresponding to two-parameter solitons are observed ; 

the one-parameter solitons coalesce soon after the formation of 

Alfven waves. 

Now that dynamic phase steepening has been shown to occur, 

future research can try to establish a connection between phase 

steepening and an increase in the wavelength Ai . If such a 

connection could be established , then the DNLS equation would 

reduce to the Nonlinear Schrodinger (NLS) equation, and Alfven 

waves could be described by the NLS equation . 

RILEY-HICKINGBOTHAM LIBRARY 
OUACHITA BAPTIST UNIVERSITY 



Granade 16 

References 

1. T. Hada, R .L. Hamilton , and C. F. Kennel. The Soliton 

Transform and a Possible Application to Nonlinear Alfven 

Waves in Space. Geophys. Res. Lett., 20, 779, (1993). 

2. T. Kakutani, H. Ono, T. Taniuti, and C.-C. Wei. Reductive 

perturbation method in nonlinear wave propagation II . 

Application to hydromagnetic waves in cold plasma. J. Phys. 

Soc. Japan, 24, 1159, (1968). 

3 . C.F. Kennel. Notebook, ms . 

4. B.T. Tsurutani. Nonlinear Low Frequency (LF) Waves: Comets 

and Foreshock Phenomena. Physics of Space Plasmas, (1991) 

5 . R . L . Hamilton, C.F. Kennel and E. Mj0lhus . Stability and 

Bifurcation of Quasiparallel Alfven Solitons. Phys . Ser., 

46, 230, (1992). 

6 . D.J. Kaup and A. Newell. An Exact Solution for a Derivative 

Nonlinear Schrodinger Equation. J. Math. Phys., 19, 798-

801, (1978) . 

7. E. Mj0lhus and T. Hada. Soliton Theory of Quasi - Parallel 

MHD Waves, ms . 

8. Press, Teukolsky, Vetterling, Flannery. Numerical Recipes 

in Fortran. 2nd ed. Cambridge: Cambridge University Press, 

1992. 

9. J. Wyller and E. Mj0lhus. A Perturbation Theory for Alfven 

Solitons. Physica D, 13 , 234, (1984). 

10. J. Wyller, T. Fla and E. Mj0lhus. The Effect of Resonant 

Particles on Alfven Solitons. Physica D, 39, 405, (1989) . 



Granade 17 

11 . R.L. Hamilton, C.F. Kennel and E. Mj0lhus. Formation of 

Quasiparallel Alfven Solitons. Phys. Ser., 46, 237, (1992) 

12 . B . T. Tsurutani and E.J. Smith, personal conversation, Sept. 

23, 1994. 



Fig. 1 a: The earth's magnetic field if it were undisturbed 

Solar 
Wind 

Fig. 1 b: The earth's magnetic field as changed by the solar wind 



Sinusoidal Wave 

Steepened Wave 

Fig. 2: Simplified example of wave steepening, adapted from Tsurutani [4] 
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Fig. 3a: A graph of the values of S11. The four different symbols represent the 
four different colors. 
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Fig. 3b: The same graph with thin lines added to emphasize the different regions. 
An eigenvalue is located where four regions meet, and is circled. 



' ' ' Region III 

' ' ' ' ' 

Region IV 

' ' ' ' ' ' ' 

Region II / 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

Region I 

Fig. 4: The motion of a single eigenvalue, taken from J. Wyller et. al. [1 O] 
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Fig. 5: The motion of two eigenvalues. The eigenvalues begin at about 0.381 and 
0.462, then move towards each other. They coalesce at about 0.42, after which 
the remaining eigenvalue moves upwards. The values were taken at equal time 
intervals. Notice that the eigenvalues change slowly at first, speed up as they 
near coalescence, then slow down after coalescence. 
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