
Ouachita Baptist University Ouachita Baptist University

Scholarly Commons @ Ouachita Scholarly Commons @ Ouachita

Honors Theses Carl Goodson Honors Program

2000

MasterPiece: Computer-generated Music through Fractals and MasterPiece: Computer-generated Music through Fractals and

Genetic Theory Genetic Theory

Amanda Broyles
Ouachita Baptist University

Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses

 Part of the Artificial Intelligence and Robotics Commons, Music Commons, and the Programming

Languages and Compilers Commons

Recommended Citation Recommended Citation
Broyles, Amanda, "MasterPiece: Computer-generated Music through Fractals and Genetic Theory" (2000).
Honors Theses. 91.
https://scholarlycommons.obu.edu/honors_theses/91

This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly
Commons @ Ouachita. It has been accepted for inclusion in Honors Theses by an authorized administrator of
Scholarly Commons @ Ouachita. For more information, please contact mortensona@obu.edu.

https://scholarlycommons.obu.edu/
https://scholarlycommons.obu.edu/honors_theses
https://scholarlycommons.obu.edu/honors
https://scholarlycommons.obu.edu/honors_theses?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/518?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.obu.edu/honors_theses/91?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mortensona@obu.edu

D

MasterPiece: Computer-generated ~1usic
through Fractals and Genetic Theory

Amanda Broyles

15 April 2000

Contents

1 Introduction

2 Previous Examples of Computer-generated Music

3 Genetic Theory
3.1 Genetic Algorithms .
3.2 Ylodified Genetic Theory .

4 Fractals
4.1 Cantor's Dust and Fractal Dimensions
4.2 Koch Curve
4.3 The Classic Example and Evrrvday Life

5 Master Piece
5.1 Introduction .
5.2 In Detail .

6 Analysis
6.1 Analysis of Purpose .
6.2 Analysis of a Piece

7 Improvements

8 Conclusion

1

3

3

4
4
5

6
6
7
7

8
8
9

14
14
14

15

16

A Prelude2.txt 17

B Read.cc 21

c Master Piece.cc 24

D Write.cc 32

E Temp.txt 35

F Tern pout. txt 36

G Tempoutmid. txt 37

H Untitledl 39

2

Abstract

A wide variety of computer-generated music exists. I have writ.­
ten a program which will generate music by using genetic theory and
fractals. The genetic theory is used to mold input pieces into a musi­
cal motif. The motif is then elaborated by the fractal formula into a
composition. A brief introduction to the world of genetic theory and
fractals is given. Analysis of a musical work produced in this manner
shows coherent patterns and also emotion.

1 Introduction

ti.1asterPiece is a program vd1ich generates music. The program is given
example input music pieces to use as a basis. The lines from the input
pieces are mutated together through genetic throry. The line produced is
then fed into a fractal formula to generate an entirr composition. By th<' use
of mathematical formulas to perp0tuate the musical output, I can g0nerate
structured compositions .

.
2 Previous Examples of Computer-generated

Music

Computer-gen<'ratcd music exampl0s are preval0nt, especially on the Inter­
net. The Internet is where my research began. I wish to review some c>xam­
ples in this section.

The first example has interesting applications in biology. The idea is to
produce music from the RNA sequence of the AIDS virus. The R:\TA pep­
tide sequence is used to determine the sequence of not<'s played. \Vhile, at
first glance, this concept seems to be more of a curiosity, it does have useful
applications. Patterns in the coding are easier to dct0ct through the music
than by simply vie,ving the lists of peptides. This technique can be applied
to any sequence of Rl\A, not just the AIDS virus. The source cod<' is written
in LISP, a highly functional language which works wdl in this situation. The
work was obtainc>d from an email posted by Peter Stone [10].

3

Genetic algorithms and fractals have also been used to compose music,
though I have never seen an example where they were used simultaneously
until my work. An example of music produced by applying a genetic al­
gorithm can be found in Composing with Genetic Algorithms by Bruce L.
Jacob [6]. Jacob explains his implementation and approach to the problem
of composing music with a computer. One interesting feature here is Jacob's
use of an EAR function. It serves as a fitness function. The EAR function
evaluates the music, and decisions concerning composition are based on this
evaluation. It is used as a filter for unpleasant sounds. r..11y first approach to
the computer-generated music problem also included such a function. How­
ever, after a more in depth study of musical concepts and styles, I realized
that there can be no definitive EAR function. In other words, beauty is in
the eye of the beholder (or the ear of the listener, in this case) . .:vlany twen­
tieth century techniques are based on upsetting the norm and questioning
the boundaries of music. Therefore, I decided not to includ(' boundaries with
regard to musical style but, instead, to let the music take a free form.

3 Genetic Theory

3.1 Genetic Algorithms

A genetic algorithm is a method for solving problems in artificial intelligence.
Genetic algorithms are algorithms which incorporate the theories of genet­
ics and natural selection. They are usually applied to optimization problems.

A chromosome is composed of genes. A gene is a trait, a characteristic. In
genetic algorithms it is sometimes useful, depending on the implementation,
to consider a gene to be a single bit (either 0 or 1). If the chromosome has
that characteristic, then the trait is turned on; the bit is a 1. Similarly, if
the chromosome does not have the given trait, then the bit is turned off; it
is a 0. A group of individual chromosomes make up a population. Genetic
algorithms seek to optimize chromosomes within the population. A chromo­
some is a potential solution to a problem. For example, the chromosomes
could represent different choices for scheduling events. However, they are not
limited to such problems. They have been used to model economic systems,
biological systems, and mechanical systems (product development).

4

There arc five steps to a genetic algorithm.

1. Generate a random initial population.

2. Test the population to see if a solution is found.

3. ·while there is no acceptable solution, select the members to kc'ep.

4. Generate new members.

5. RepE>at from Step 2 until an accrptahlr solution is found.

Therr may be multiple solutions that arr acceptable. For example, an ac­
ccptablr solution may be any chromosorrH' \Vith a fitness rating of over 80%.

The fitness function , specified by the situation and data, is used to test the
members of the population. the chromosomes. Chromosomes are generated
in two ways. The first is through crossovers. As in genetics a ne"v individual is
creatrd from two parent chromosomes. Part of the new chromosome's genes
come from oqe parent. and the rest come from the other parent. The pattern
in which the genes come from the parrnts is lrft to each genetie algorithm.
Mutation of a chromosome occurs whrn one or more genes are mutatrd. A
gene that was previously inactive may become active, or a trait that was
turnt.=>d on may be turned off. Dur to thr algorithm's unique combination of
randomness and determinism. genrtic algorithms are often very nice methods
for solving a variety of problems [3].

3.2 Modified Genetic Theory

~laster Piece uses a modified version of a genetic algorithm, incorporating thr
genetic theory but not the fitness function or testing. In music there is no
singular, widcly-accrpted standard to determine the quality or beauty of a
musical composition. Hence, I deemed a fitnrss function to be an unnecessary
complication. I only perform crossovers and mutations on my input musical
chromosomes.

5

4 Fractals

Fractals have been a "hot topic" for mathematicians in recent years. Th<'
concept is not that difficult to understand and can even be generalized into
one word: self-similarity. In 1977 I\1andlebrot formed the mathematical rep­
resent.at.ion, but philosophers and scientists have pondered the concept for
years. Jonathan Swift wrote about fleas on fleas on fleas [4]. Even Doctor
Suess had the right idea with "Horton Hears a 'Who." In a fractal a small
section will look exactly like the wholC'. Thus, a city within a city, a flea on
the back of a flea, etc., all exhibit sdf-sirnilarity.

4.1 Cantor's Dust and Fractal Dimensions

Consider a thought exercise proposC'cl by Cantor. Take a line segment.

Divide it into thirds and then remove the middle third. The result would
look something like this.

Now, take out the middle third of these line segments.

Continuing .

This became known as Cantor's Dust. At infinity, mathematicians might
consider this to be a set of points, thus, having dimension 0. However,
these really represent infinitely small piec<'s of a line segment. Line segments
have dimension 1. So, one can see that it may be logical to give this set
of Cantor's Dust a ':fractional dimension" (somewhere between 0 and 1).

6

After n iterations the line segments would havr a total length of (2/3r. Ifs
fractional, or fractaL dimension is defined to he log(2)/ log(3) ~ 0.6309 [8].

4.2 Koch Curve

Koch's Curve, proposed by the mathematician Helge von Koch in 1904, is an
example of a curve in a finite amount of space that is infinitely long. How?
Take a line segment to serve as the base. Then "break" it into four rqual
pieces and reassemble them as shown. This is called the motif of thr fractal,
or the building block on which it is formed.

-~
0 3

.:"Jow, let each of the four segments (0-3) serve as a base, and repeat the
procrss. Eventually, the figure will look like the following [8, page 28].

It is self-similar. At infinity, it will occupy a finite space, but it will have
an infinite length!

4.3 The Classic Example and Everyday Life

If one looked at a map of a coastline, one might see its major inlets and the
general curve of the shore. However, if one wrrc to walk along that samr
stretch of coastline, it would be farther than the measure on thr map be­
cause one would be walking around the smaller inlets that were too small to
include on the map. Similarly, if an ant walkrd along the shorr, he would
have to walk around smaller indentations in the shore, further increasing his
journey. This can be carried into the atomic and subatomic levels. Hence. it
is a finit.c coast with infinite length. It all depends on the point of view [4].

7

Fractal formulas are very powerful. Due to their self-similarity, or recur­
sion. the formulas can be fairly simple mathematically. This allows them to
be codC'd C'asily. Scientists have started entertaining the notion that formulas
for a human's biological makeup ar<' stored as fractal formulas in DI\A. If
the position for every cell was specifically storC'd, it seems impossible that
human DI\A would be sufficient to hold all the information. However, if a
formula which stated how often a blood vessel should branch was stored and
if this same formula applied proportionally to smaller and smaller veins and
capillaries, then it seems quite possiblr for a D:.JA sequence to be adrquatc
[4].

In fact, many fractal patterns can be observed in nature. For example.
the branch<'s of a tree or the fronds of a forn may correspond to such a fractal
patt.C'rn. "The bronchi of the human lung exhibit self-similarity over at least
15 lC'vels [4]." Even in not so natural set.tings, such as the fluctuations in
cotton priers. a fractal pattern of self-similarity was found to hold [4].

For a brtter explanation of fractal dimensions consult "Math and Real
Lifr: a Brief Introduction to Fractional Dimensions [4]"' or "Fractals [8]".

5 Master Piece

5 .1 Introduction

MasterPiece is a program designed to generate music through genetic theory
and fractals. Example music pieces arc input into .tv1astff Piece. The pieces
arc then mutated together using the genetic theory discussed in section 3.
The resulting line of music becomes not only a musical motif but a motif for
the fractal formula to follow. The fractal formula expands the motif into a
complete composition. The piece. though originated through metamorphasis
and mutation of the motif, should be coherent due to the fractal quality of
self-similarity. Of course, there are small flaws and approximations due to
my approach. This will be discussed in section 7. The aesthetic quality of
my endeavor is discussed in section 6.

8

5.2 In Detail

~1y Master Piece project was implemented in three separate programs, read. cc,
MasterPiece. cc, and write. cc. I also used software which I downloaded
from the Internet. The soft\.vare package, called Midi DisAssembler, is lo­
cated at [1]. Basically, the Midi DisAssembler program takes files in MIDI
format (extension . mid) and creates from them a text file. Likewise, the pro­
gram also creates files of extension . mid from text files of a certain format.
\Vhile this software has limitations, it was appropriate for my programming
and testing purposes. One limitaion to the l\11idi DisAssembler is that, as I
found, it will sometimes produce . mid files that cannot be opened with stan­
dard l\flDI sofhvare, like Finale. This led me to wonder about the validity
of the files. \Vere they being transfered in the traditional MIDI data struc­
ture? To date, I have no definitive answer to this. Even with its problems,
the software was essential to the completion of my project. I designed my
programs around its input and output. Examples of the text created by Midi
DisAssembler may be viewed in Appendix A.

The diagram in Figure 1 shows the structure of my project. First, the
three input pieces are fed into the ~·1idi DisAssembler. This prepares them
as text files to be translated further by the read. cc program. Here an inter­
mediate text file is created for each piece. After the intermediate text files
for each of the three musical works have been created, the files are given to
MasterPiece. cc where the mathematical formulas are applied. This pro­
duces an intermediate output file representing the new composition. This
composition is then translated to a usable form by write. cc. Adjustments
for tempo may be added by hand. Then, the composition is reassembled by
the ~1Iidi DisAssembler to create an output musical file.

Starting with the MIDI file in text format, as decomposed by Midi Dis­
Assembler, my first program (in the series of three) is a translator. Its title
is read. cc. This program scans the data file and picks up the important
pieces of information. It reads the note value, the octave, and calculates the
time until the note is turned off. An intermediate input file is created (see
Appendix E).

The input file is then given to my second program, the one entitled
MasterPiece. cc. Actually, three intermediate input files, each translated

9

Piece1 .mid Piece2.mid Piece3.mid

Midi DisAssembler

read.cc

MasterPiece.cc

write.cc

Midi Assembler

Output.mid

10
Figure 1: Overall diagram of the iviasterPiece project

by read. cc, are given, one for each of the music pieces required to generate
the motif1. Each piece is assigned to be a chromosome. The chromosomes
are then put through a series of crossovers as seen in Figure 2. The boxes in
the figure represent individual chromosomes, and the lines indicate lineage.
The input pieces, themselves, will, for convenience, be short, approximately
ten-second motifs from previously-composed musical works. For example, I
could easily use the highly recognizable motif from Beethoven's Fifth Sym­
phony. So, from the three pieces, a new motif is born.

It is worth noting at this point that a coherent piece can be created from
any motif, consonant or dissonant. All this to say that one need not worry
too much if the generated line does not "sound right." This line must then
be formatted so it can be put into the fractal code.

Basically, I have four integers to put into the fractal formula. One rep­
resents note value. For example, A corresponds to 0, and B corresponds to
1. There is also an integer which is set to one if the note value is sharp.
Since ":)'' is not a character on the keyboard and since the l\·1idi DisAssem­
bler program only specifies sharp or natural, there is no need to specify this
parameter. Also, any flat note can be represented as a sharp note one value
lower. The third integer represents the offset value until the note is turned
off (i.e. its duration). The octave in which the note resides is stored as well.
So, the line

0 0 8 2

would correspond to At which has a duration of 8 and is in octave number 2.
(The octaves start from zero.)

However, the fractal encoding scheme I have chosen to implement calls for
a 2 x 1 matrix of numbers. I must use a linear transformation to crunch two
numbers into one, thereby reducing my number of integers from four to two.
Then, the matrix is put into the fractal formula. The fractal formula can be
changed for different test cases. Once the new values have been generated,
modular arithmetic, arithmetic on remainders, is used to separate one value
back into t\vo integers, resulting in a return to four values.

1This motif serves not only as a musical motif but as a fractal motif, as well.

11

1

(1, 2)'
(1, 3)

2

motif

12

3

(2' 3) {
(1, 3)

Figure 2: Crossovers used to create the motif

For example, I might start out >vith n1,n2 ,n3 , and n4 . Suppose n 1 is in
the range [0 .. 6], n2 is in the range [0 .. 2], n3 is in the range [0 .. 3], and n4 is in
the range [0 . .4]. My transform might look like

m 1 = 7n1 + n2

m2 = 4n3 + n4

This would give the matrix [:~ l · The output from the fractal might be

[j~] , which would be transformed into the new n1 , n2 , n3 , and n4 as follows.

n1 = !1 mod 7
n2 = (Ji mod 7) mod 3
n3 = h mod 4
n4 = (h mod 4) mod 5

n1 = Ji mod 7 means that n1 holds the remainder after Ji is divided by 7.

The ne'"' note specified by the four resulting integers is then added on the
end of the wcrrk, and the process continues. The lines are created one by one
until a maximum size has been achieved for the piece. Thus, I have created
an intermediate output file (see Appendix F).

All that is left is to translate the generated file into a format that can
be reassembled by the Ivlidi DisAssembler. The third program is the series,
therefore, is write . cc. This program performs the opposite task as read. cc.
Example output from this program is shown in Appendix G. Some adjust­
ments by hand may be required before the file is loaded into the rv1idi DisAs­
sembler. This is largely due to the fact that the ivlidi DisAssembler software
attempts to adjust for tempo. l\fost :MIDI software pagkages leave this detail
to the individual user. Therefore, some corrections for meter must be added
before the file will be accepted. \Vhile the code could be modified to print
different meter and tempo markings for each trial, I found it easier to copy
and paste the information from a similar file each time it was needed. After
the text file is input into fvlidi DisAssembler, a music file with extension .mid
is produced. In these cross-composed files lies the intrigue.

13

6 Analysis

6.1 Analysis of Purpose

In my experience, computer-generated music can be thought of as having
three main purposes. First, it can be conducted as a thought experiment.
Different formulas and techniques can be applied and manipulated, limited
only by the person's imagination and ability. Second, the music can be gen­
erated to determine 'vhat can be learned by these methods. Such is the case
of the AIDS RNA music. Of course, a third purpose is for entertainment.
I believe that my work can be thought of in all these ways. The idea orig­
inated as a thought experiment: Could I compose a program to produce
music through fractals and genetic theory? As my work continued, I discov­
ered that it would be interesting to see what would be revealed by a study
of such pieces. The most obvious initial discovery is whether or not fractals
used in this manner have the potential to generate meaningful compositions.
I think that they do. Also, there is a certain quality of entertainment and
enjoyment about the endeavor.

6.2 Analysis of a Piece

The piece I chose to analyze was based on a Bach prelude, It is Well with
My Soul, and Hymn of Promise. I chose these pieces for their unity of sound
and message. These motifs were then presented as chromosomes to my Mas­
ter Piece program and expanded through a fractal formula. (see Appendix H)

I chose to analyze this piece by hand instead of converting it to a I\.fIDI
file. Therefore, I printed out the text and played the piece on a piano to
listen for quality and patterns. The first half of the piece sounded somewhat
melodious. I believe that this can be enhanced by ~1IDI software that will
allow me to separate the music into instruments, thus putting the melody in
one instrument and allowing other instruments to come in and out playing
the supporting material. \Vhile this suggests more human involvement and
less emphasis on chance, I believe that it does not defeat the purpose of my
project. The musical patterns remain whether the music is performed on the
computer in one instrument or separated and performed by human musicians.

During the first stage of my analysis, I played the sequence of notes in

14

order but limited them to a single octave. In other 'ivords, I did not take
the octave number into consideration. I merely assumed the number to be
constant. Once I became more familiar with the arrangement , I tried to
move it into the correct octaves. I discovered that the piece actually sounded
better when played in the respective octaves. I had supposed that a pattern
of melody would be more apparent by limiting it to one octave. This was
not the case.

In the second half of the composition, it seems that the music effectively
makes a key change. The key change occurs in the section that is generatrd
by the fractal pattern. One particularly interesting section contains eighteen
F~ notes in a row with varying octaves and durations. Perhaps the fractal
pattern became a little too self-similar! Actually, I found this part intrigu­
ing. Quite a bit of emotion is conveyed by the Fj notes in the variety of
octaves. That section may also serve as a bridge between the melodious first
half and the ending. Several times before the ending, smaller series of Fj
notes appear. The work ends on a single high A note, an appropriate ending,
I feel. Interestingly, the only B that is included in the piece is a B~, which
translates to .c on the keyboard.

I have successfully produced music through fractals and genetic theory.
They are intriguing pieces due to their design. It is fair to admit that pat­
terns can be found in almost anything, and. while I will argue that this is
a coherent, legitimate way to compose music, ultimately, it is up to the in­
dividual listener to decide. However, is that not true with any piece of music?

7 Improvements

One aspect of my program dealing with the fractal generation pattern could
be viewed as a limitation. The program plugs each note into the fractal in or­
der, adding each new note onto the end. Instead, the notes could be thought
of as a set of numbers from which the fractal could choose. This might lead
to a better fractal representation, but it might also decrease the importance
of the genetically created motif. Therefore, I chose not to implement this
idea.

15

R\LE'<-HICKINGBOTHAM L\BRARY
OUACHITA BAPTIST UNIVERSITY

However, there is one improvement that would undoubtedly make the
compositions more coherent and pleasing to the average listener. Instead
of letting the program select any octave in which to place the note, the
octave could be weighted. For example, the octave values commonly used
in the input pieces could be given higher weights. The other values would
be given lower weights. Therefore, it would be more likely that the notes
would fall in a common range. This could also be accomplished by using
modular arithmetic, as discussed earlier, to limit the octave range. However,
the drawback here is that notes outside the range would be eliminated totally.

8 Conclusion

MasterPiece is one example of a program that will generate music. This is
accomplished by using genetic theory and fractals. A motif is created by
combining three input pieces using the genetic theory concepts of crossovers
and mutations. This motif serves as both a musical and fractal motif. Then
the fractal code is applied to the motif, producing an entire composition.

The example piece created in this manner contains coherent patterns and
is a unique composition. It is a thought experiment that also demonstrates
MasterPiece's potential. The piece can simply be enjoyed as entertainment,
as well. In the end, it is not I who holds the final judgement on the va­
lidity and aesthic quality of my composition. Each person must decide for
themselves whether to like or dislike my computer-generated music through
fractals and genetic theory.

16

A Prelude2.txt

MThd I Format=1 I # of Tracks=2 I Division=1024

Track #0 **
Time Event

5: 1: 1 !End of trackl

Track #1 **
Time Event

1: 1: 0 On Note chan= 1 pitch=C 3 vol=64
256 On Note chan= 1 pitch=E 3 vol=64
512 On Note chan= 1 pitch=G 3 vol=64
768 Off Note chan= 1 pitch=g 3 vol=O

On Note chan= 1 pitch=C 4 vol=64
2: 0 Off Note chan= 1 pitch=c 4 vol=O

On Note chan= 1 pitch=E 4 vol=64
256 Off Note chan= 1 pitch=e 4 vol=O

On Note ch an= 1 pitch=G 3 vol=64
512 Off Note chan= 1 pitch=g 3 vol=O

On Note chan= 1 pitch=C 4 vol=64
768 Off Note chan= 1 pitch=c 4 vol=O

On Note chan= 1 pitch=E 4 vol=64
832 Off Note chan= 1 pitch=e 3 vol=O
981 Off Note chan= 1 pitch=c 3 vol=O

3 : 0 Off Note chan= 1 pitch=e 4 vol=O
12 On Note chan= 1 pitch=C 3 vol=64

268 On Note chan= 1 pitch=E 3 vol=64
512 On Note chan= 1 pitch=G 3 vol=64
768 Off Note chan= 1 pitch=g 3 vol=O

On Note chan= 1 pitch=C 4 vol=64
4 : 0 Off Note chan= 1 pitch=c 4 vol=O

On Note chan= 1 pitch=E 4 vol=64
256 Off Note chan= 1 pitch=e 4 vol=O

On Note chan= 1 pitch=G 3 vol=64
512 Off Note chan= 1 pitch=g 3 vol=O

On Note chan= 1 pitch=C 4 vol=64
768 Off Note chan= 1 pitch=c 4 vol=O

17

On Note chan= 1 pitch=E 4 vol=64
942 Off Note chan= 1 pitch=e 3 vol=O
994 Off Note chan= 1 pitch=c 3 vol=O

2: 1: 0 Off Note chan= 1 pitch=e 4 vol=O
25 On Note chan= 1 pitch=C 3 vol=64

281 On Note chan= 1 pitch=D 3 vol=64
512 On Note Chan= 1 pitch=A 3 vol=64
768 Off Note chan= 1 pitch=a 3 vol=O

On Note chan= 1 pitch=D 4 vol=64
2: 0 Off Note chan= 1 pitch=d 4 vol=O

On Note chan= 1 pitch=F 4 vol=64
256 Off Note chan= 1 pitch=f 4 vol=O

On Note chan= 1 pitch=A 3 vol=64
512 Off Note chan= 1 pitch=a 3 vol=O

On Note chan= 1 pitch=D 4 vol=64
768 Off Note chan= 1 pitch=d 4 vol=O

On Note chan= 1 pitch=F 4 vol=64
917 Off Note chan= 1 pitch=d 3 vol=O

1006 Off Note chan= 1 pitch=c 3 vol=O .
3: 0 Off Note chan= 1 pitch=f 4 vol=O

38 On Note chan= 1 pitch=C 3 vol=64
294 !On Note chan= 1 pitch=D 3 vol=64
512 On Note chan= 1 pitch= A 3 vol=64
768 Off Note chan= 1 pitch=a 3 vol=O

On Note chan= 1 pitch=D 4 vol=64
4: 0 Off Note chan= 1 pitch=d 4 vol=O

On Note chan= 1 pitch=F 4 vol=64
256 Off Note chan= 1 pitch=f 4 vol=O

On Note chan= 1 pitch=A 3 vol=64
512 Off Note chan= 1 pitch=a 3 vol=O

On Note chan= 1 pitch=D 4 vol=64
768 Off Note ch an= 1 pitch=d 4 vol=O

On Note chan= 1 pitch=F 4 vol=64
827 Off Note chan= 1 pitch=d 3 vol=O

1019 Off Note chan= 1 pitch=c 3 vol=O
3: 1: 0 Off Note chan= 1 pitch=f 4 vol=O

51 On Note chan= 1 pitch=B 2 vol=64
307 On Note chan= 1 pitch=D 3 vol=64

18

512 On Note chan= 1 pitch=G 3 vol=64
768 Off Note chan= 1 pitch=g 3 vol=O

On Note chan= 1 pitch=D 4 vol=64
2: 0 Off Note chan= 1 pitch=d 4 vol=O

On Note chan= 1 pitch=F 4 vol=64
256 Off Note chan= 1 pitch=f 4 vol=O

On Note chan= 1 pitch=G 3 vol=64
512 Off Note chan= 1 pitch=g 3 vol=O

On Note chan= 1 pitch=D 4 vol=64
768 Off Note chan= 1 pitch=d 4 vol=O

On Note chan= 1 pitch=F 4 vol=64
947 Off Note chan= 1 pitch=d 3 vol=O

3: 0 Off Note chan= 1 pitch=f 4 vol=O
8 Off Note chan= 1 pitch=b 2 vol=O

64 On Note chan= 1 pitch=B 2 vol=64
320 On Note chan= 1 pitch=D 3 vol=64
512 On Note chan= 1 pitch=G 3 vol=64
768 Off Note chan= 1 pitch=g 3 vol=O

On Note chan= 1 pitch=D 4 vol=64 .
4: 0 Off Note ch an= 1 pitch=d 4 vol=O

On Note chan= 1 pitch=F 4 vol=64
256 Off Note chan= 1 pitch=f 4 vol=O

On Note chan= 1 pitch=G 3 vol=64
512 Off Note chan= 1 pitch=g 3 vol=O

On Note ch an= 1 pitch=D 4 vo1=64
768 Off Note chan= 1 pitch=d 4 vol=O

On Note chan= 1 pitch=F 4 vol=64
904 Off Note chan= 1 pitch=d 3 vol=O

4: 1: 0 Off Note chan= 1 pitch=f 4 vol=O
Off Note chan= 1 pitch=b 2 vol=O

76 On Note chan= 1 pitch=C 3 vo1=64
332 On Note chan= 1 pitch=E 3 vo1=64
512 On Note chan= 1 pitch=G 3 vol=64
768 Off Note chan= 1 pitch=g 3 vol=O

On Note chan= 1 pitch=C 4 vo1=64
2: 0 Off Note chan= 1 pitch=c 4 vol=O

On Note chan= 1 pitch=E 4 vol=64
256 Off Note chan= 1 pitch=e 4 vol=O

19

On Note chan= 1 pitch=G 3 vol=64
512 Off Note chan= 1 pitch=g 3 vol=O

On Note chan= 1 pitch=C 4 vol=64
768 Off Note chan= 1 pitch=c 4 vol=O

On Note chan= 1 pitch=E 4 vol=64
968 Off Note chan= 1 pitch=e 3 vol=O

3: 0 Off Note chan= 1 pitch=e 4 vol=O
34 Off Note chan= 1 pitch=c 3 vol=O
89 On Note chan= 1 pitch=C 3 vol=64

345 On Note chan= 1 pitch=E 3 vol=64
512 On Note chan= 1 pitch=G 3 vol=64
768 Off Note chan= 1 pitch=g 3 vol=O

On Note chan= 1 pitch=C 4 vol=64
4: 0 Off Note chan= 1 pitch=c 4 vol=O

On Note chan= 1 pitch=E 4 vol=64
256 Off Note chan= 1 pitch=e 4 vol=O

!On Note chan= 1 pitch=G 3 vol=64
512 !Off Note chan= 1 pitch=g 3 vol=O

!On Note chan= 1 pitch=C 4 vol=64 .
!Off Note 768 chan= 1 pitch=c 4 vol=O
!On Note chan= 1 pitch=E 4 vol=64

947 !Off Note chan= 1 pitch=e 3 vol=O
5: 1: 0 !Off Note chan= 1 pitch=e 4 vol=O

!Off Note chan= 1 pitch=c 3 vol=O
1 !End of trackl

20

B Read.cc

//Programmer: Amanda Broyles
//read.cc

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void position(char pos[], FILE *f);
typedef struct notestruct noteinfo;
struct notestruct

{

char note[2];
int offset;
int octave;

};

void main (')
{

FILE *f, *fout;
int i=O, j=O, k=O, n=O, maxnum=150;
noteinfo array[maxnum];
char buffer[80];
char pos[4];
int flag;

f = f open (1 1 it is well with my soul . txt", "r") ;
fout = fopen("itiswell.txt", 11 w11

);

for (i=O; i<maxnum; i++) //initialize offset to zero
array[i] .offset = O;

for (i=O; i<8; i++)
fgets(buffer , 80, f);

i = O;

//reads over first 8 lines

//reset i

21

for (j=O; ! (f eof (f)) ;
position(pos, f);

j++) { //reads from doc
//and prints to out file

}

if (pos[O] == 'n') {
array[i] .note[O] = pos[1];
array[i] .note[1] = pos[2];

//if on note, write to the array

array[i] .octave = (int)pos[3];
i++; //increment array index number

}

if (pos[O] == 'f') { //if off note

}

pos[1] = pos[1] + 'A' -'a';
flag =O;

//capitalize note value

for (k=O; k<j && flag==O; k++) { //and compare from start of array
if (array[k] .note[O] == pos[1] && array[k] . offset == 0) {

if (array[k] .note[1] == pos[2]) {
if (array[k] .octave == (int)pos[3]) {

array[k] .offset = i - k; //calculate correct offset
flag = 1; //mark found

}

}

for (n=O; n<i; n++) {
fprintf (fout, 11 %c%c 'l.d %c\n 11

, array[n] .note[O], array[n] .note[1],
array[n] .offset, array[n] .octave);

}

fclose(f);
fclose(fout);

printf ("done\n");

}

//---

22

void position(char pos[], FILE *f)
//returns the characters for note, octave, and on/off
{

}

char buffer[80];

fgets (buffer, 80, f);

pos[O] = buffer[14];
pos[1] = buffer[42];
pos[2] = buffer[43];
pos[3] = buffer[44];
if (buffer[42] == 'v') {

pos[O] = buffer[7];
pos[1] = buffer[35];
pos[2] = buffer[36];
pos[3] = buffer[37];

}
if (buff~r[42] == '=') {

pos[O] = buffer[15];
pos[1] = buffer[43];
pos[2] = buffer[44];
pos[3] = buffer[45];

}
if (buffer[42] == ' ') {

pos[O] = buffer[8];
pos[1] = buffer[36];
pos[2] = buffer[37];
pos[3] = buffer[38];

}

//read a line

//get pertinent positions

//correct for tabs

23

C MasterPiece.cc

///Programmer: Amanda Broyles

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

typedef struct notestruct noteinfo;
struct notestruct

{

char note[2];
int offset;
int octave;

};

void Mutate(noteinfo cl[], noteinfo c2[], noteinfo c3[], int nl, int n2,
int n3);

int print(int n, int arr[]);
int Value(char note);
int Typed(char sharp);
char DeValue(int n);
char UnTyped(int n);
void Generate(int n1, int n2, int n3, int n4, int out[4]);

void main ()
{

FILE *fl, *f2, *f3, *fout, *f;
int i=O, j=O, n=O, k=O, maxnum=150;
noteinfo array[maxnum];
noteinfo chromel[maxnum], chrome2[maxnum], chrome3[maxnum];
int check[maxnum]; //to check if position clear
int out [4];
int val, sharp;
char valu, sh;
int nl, n2, n3;

24

f1 = fopen (11 itiswell.txt11
, "r"); //open files to read and write

f2 = fopen (11 Prelude2out.txt", 11 r 11
);

f3 = fopen("hymnofpromiseout. txt", "r");
fout = fopen(11 newout.txt 11

, "w");

for (i=O; !(feof(f1)); i++) { //scan files and assign chromosomes

}

fscanf (f1, "%s%d%d", chrome1[i] .note, &(chrome1[i] .offset),
&(chrome1[i] .octave));

n1 = i;

for (i=O; ! (f eof (f2)) ; i ++) {

}

fscanf (f2, "%s%d%d", chrome2[i].note, &(chrome2[i].offset),
&(chrome2[i] .octave));

n2 = i;
.

for (i=O; ! (f eof (f3)); i ++) {

}

fscanf (f3, "%s%d%d", chrome3[i] .note, &(chrome3[i] .offset),
&(chrome3[i] .octave));

n3 = i;

Mutate(chrome1, chrome2, chrome3, n1, n2, n3);

f = fopen(11 out. txt", "r");

for (i=O; !(feof(f)); i++) {
f scanf (f, "%s%d%d\n", array [i] . note, & (array [i] . off set) ,

&(array[i] .octave));
}

for (k=O; k<maxnum-i; k++) {
val= Value(array[k] .note[O]);
sharp= Typed(array[k] .note[1]);

25

}

Generate(val, sharp, array[k] .offset, array[k] .octave, out);

valu = DeValue(out[O]);
sh= UnTyped(out[1]);
array[i+k] .note[O] = valu;
array[i+k] .note[1] = sh;
array[i+k] .offset = out[2];
array[i+k] .octave = out[3];

i = i + k;

for (n=O; n<i; n++) {

}

fprintf (fout, 11 /.c/.c %d /.d\n11
, array [n] . note [OJ , array [n] . note [1] ,

array[n] .offset, array[n] .octave);

printf (11 dope\n 11
);

}

II -------------------Mutate-----------------------------

void Mutate(noteinfo c1[], noteinfo c2[], noteinfo c3[], int n1,int n2,int n3)
{

int maxnum=150;
noteinfo temp1[maxnum], temp2[maxnum], temp3[maxnum];
int i, j, k, n;
int t1, t2, t3, t4, t5;
FILE *f4;

for(i=O; i<4; i++) {
temp1[i] .note = c1[i] .note;
temp1[i] .offset = c1[i] .offset;
temp1[i] .octave = c1[i] .octave;

}

for (j=i-1; j<2*4; j++) {

26

}

temp1[j] .note = c2[j] .note;
temp1[j] .offset = c2[j] .offset;
temp1[j] .octave = c2[j] .octave;

for (k=j-1; k<3*4; k++) {

}

temp1[k] .note = c1[k] .note;
temp1[k] .offset = c1[k] .offset;
temp1[k] .octave = c1[k] .octave;

for (i=k-1; i<n2; i++) {

}

temp1[i] .note = c2[i] .note;
temp1[i] .offset = c2[i] . offset;
temp1[i] .octave = c2[i] .octave;

ti = i;
//--

for(i=O; i<6; i++) {

}

ternp2[i] .note = c2[i] .note;
ternp2[iJ .offset = c2[i] .offset;
ternp2[i] .octave = c2[i] .octave;

for (j=i- 1; j<2*6; j++) {
temp2[j] .note = c3[j] .note;
temp2[j] .offset = c3[j] .offset;
temp2[j] .octave = c3[j] .octave;

}
for (k=j-1; k<3*6; k++) {

temp2[k] .note = c2[k] .note;
temp2[k] .offset = c2[k] . offset;
temp2[k] .octave = c2[k] .octave;

}
for (i=k-1; i<n3; i++) {

}

temp2[i] .note = c3[i] .note;
ternp2[i] .offset = c3[i] .offset;
temp2[i] .octave = c3[i] .octave;

t2 = i;

27

//--

for(i=O; i<5; i++) {

}

temp3[i] .note = c1[i] .note;
temp3[i] .offset = c1[i] .offset;
temp3[i] .octave = c1[i] .octave;

for (j=i-1; j<2*5; j++) {
temp3[j] .note = c3[j] .note;
temp3[j] .offset = c3[j] .offset;
temp3[j] .octave = c3[j] .octave;

}
for (k=j-1; k<3*5; k++) {

temp3[k] .note = c1[k] .note;
temp3[k] .offset = c1[k] .offset;
temp3[k] .octave = c1[k] .octave;

}
for (i=k-1; i<n2; i++) {

}

temp3[i] .note = c3[i] .note;
temp3[iJ .offset = c3[i] .offset;
temp3[i] .octave = c3[i] .octave;

t3 = i;
//--

for (i=12-1; i<2*12; i++) {

}

temp1[i] .note = temp3[i] .note;
temp1[i] .offset = temp3[i] .offset;
temp1[i] .octave = temp3[i] .octave;

//--

for (i=12-1; i<2*12; i++) {

}

temp2[i] .note = temp3[i] .note;
temp2[i] .offset = temp3[i] . offset;
temp2[i] .octave = temp3[i] .octave;

28

11--

}

for (i=O; i<25; i++) {

}

temp3[i] .note = temp1[i] .note;
temp3[i] .offset = temp1[i] .offset;
temp3[i] .octave = temp1[i] .octave;

for (i=25-1; i<t2; i++) {

}

temp3[i] .note = temp2[i] .note;
temp3[i] . offset = temp2[i] .offset ;
temp3[i] .octave = temp2[i] .octave ;

f4= fopen("out . txt", "w") ;

for (n=O; n<t2-1; n++) {

}

fprintf (f4, "%c%c %d %d\n", temp3[n] .note[O], temp3[n] .note[1],
temp3[n] . offset, temp3[n] .octave);

f close (f4) ;

II -------------------Print------------------------------

int print(int n, int arr[])
{

}

if (arr [n] == 0)
return 1;

else
return O;

II -------------------Value------------------------------

29

int Value(char note)
{

if (note -- 'A')
return O;

if (note -- 'B')

return 1 ·
'

if (note -- 'C')
return 2·

'
if (note -- 'D')

return 3·
'

if (note -- 'E')
return 4·

'
if (note -- 'F')

return 5;
if (note -- 'G')

return 6 ·
'

}

II -------------------DeValue----------------------------

char DeValue(int n)
{

if (n -- 0)

return 'A';
if (n -- 1)

return 'B';
if (n -- 2)

return 'C';
if (n -- 3)

return 'D';
if (n -- 4)

return 'E';
if (n -- 5)

return 'F';
if (n == 6)

return 'G' ;
}

30

II -------------------Typed------------------------------

int Typed(char sharp)
{

}

if (sharp == ' ')
return O;

if (sharp == '#')

return 1;

II -------------------UnTyped----------------------------

char UnTyped(int n)
{

if (n == 0)
return , , . ,

if (n == 1)

return '#';
}

II -------------------Generate---------------------------

void Generate(int n1, int n2, int n3, int n4, int out[4J)
{

int f [2J;
int x[2J; //input matrix x

x[OJ = 7*n1 + n2; //linear transformations
x[1J = 10*n3 + n4;
f [OJ = x[OJ * 1 + 2 * x [1J ; //fractal formulas
f [1J = x[OJ * -1 + x [1J * 1;

out [OJ = f [OJ °!. 7; //new note
out [1J = (f [OJ % 7) % 2· //new type ,
out [2J = (f [1J + 30) % 10; //new offset
out [3J = ((f [1J + 30) °!. 10) °!. 5; //new octave

}

31

D Write.cc

//Programmer: Amanda Broyles
//write.cc

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

void position(char pos[], FILE *f);
typedef struct notestruct noteinfo;
struct notestruct

{

char note[2];
int offset;
int octave;

};

void main ()
{

FILE *f, *fout;
int i=O, j=O, k=O, n=O, m=O, maxnum=150;
noteinfo array[maxnum], out[maxnum];
char c;
int check[maxnum]; //to check if position clear
int flagl=O, flag2=0;
char buffer[80];

f = fopen("tempout . txt", "r") ;
fout = fopen("tempoutmid. txt" , "w");

//write first 8 lines
I /read from file

for (i=O; !(feof(f)); i++) {
I I f scanf (f, "'l.s %d 'l.d", array [i] . note, array [i] . off set, array [i] . octave) ;

32

}

fgets(buffer, 80, f);
array[i] .note[O] = buffer[O];
array[i] .note[1] = buffer[1];
array[i] .offset = (int)buffer[3] - 48;
array[i] .octave = (int)buffer[5] - 48;

for (j=O; j<maxnum; j++) {
check[j] = O; //initialize check

}

for (j=O; j<i; j++) { //create output array
flag1 = O;
k = j;
while (flag1 == 0) { //while not found and position clear

array

}

if (check[k] == 0) {
out[k] .note[O] = array[j] .note[O]; //assign on note values into

out [k] . note [1]
out[k] .octave
out[k] .offset
check[k] = 1;
flag1 = 1;

}

else
k++;

= array[j] .note[1];
= array[j] .octave;
= O;

//mark as used
//set exit condition

//otherwise, increment array index

flag2 = O;
n = array[j].offset;
while (flag2 == 0) {

if (check[k + n] == 0) {

//assign off note values into array

out[k+n] .note[O] = tolower(array[j] .note[O]);
out[k+n] .note[1] = array[j] .note[1];

}

out[k+n] .octave = array[j] .octave;
out[k+n] .offset = O;
check[k+n] = 1;
flag2 = 1;

33

//mark as used
//set exit condition

}

else
n++; //otherwise, increment array index

//printf (11 %c %c
}

II out[k] .note[O], out[k+n] .note[O]);

}

m = 4;
n = O;

for (k=O; k<(2*i); k++) {
if (m == 4) {

}

}

fprintf (fout, 11

m = O;
n++;

'l.d: II n'l.4+1);

if (isupper(out[k] .note[O])) {

}

fprintf(fout, "\t%c0n Note\t 11
, toascii(124));

m++;

else
fprintf(fout, 11 \t%cOff Note\t 11

, toascii(124));
fprintf(fout, 11 %c chan= 1\t", toascii(124));
fprintf(fout, 11 %c pitch=%c", toascii(124), out[k].note[O]);
fprintf(fout, "%c%d\t", out[k].note[1], out[k].octave);
fprintf(fout, 11 %c vol=64\n", toascii(124));

34

E Temp.txt

A 3 4

B 2 3
C# 5 1
A 4 4

D 5 4

35

F Tempout.txt

A 3 4

B 2 3
C# 5 1
A 4 4

D 5 4
F# 4 4
E 6 1
F# 6 1
E 4 4
D# 3 3
F# 8 3
D# 3 3
E 5 0
E 6 1
E 1 1
G 7 2
E 1 1
c 2 2
D# 3 3
B# 3 3

E 0 0
B# 3 3
c 8 3
E 1 1
E 5 0

36

G Tempoutmid.txt

1: On Note chan= 1 pitch=A 4 vol=64
On Note chan= 1 pitch=B 3 vol=64
On Note chan= 1 pitch=C#1 vol=64
Off Note chan= 1 pitch=a 4 vol=64
Off Note chan= 1 pitch=b 3 vol=64
On Note chan= 1 pitch=A 4 vol=64

2: On Note chan= 1 pitch=D 4 vol=64
Off Note chan= 1 pitch=c#1 vol=64
On Note chan= 1 pitch=F#4 vol=64
Off Note chan= 1 pitch=a 4 vol=64
On Note chan= 1 pitch=E 1 vol=64
Off Note chan= 1 pitch=d 4 vol=64
Off Note chan= 1 pitch=f#4 vol=64
On Note chan= 1 pitch=F#1 vol=64

3: On Note chan= 1 pitch=E 4 vol=64
On Note chan= 1 pitch=D#3 vol=64
Off Note chan= 1 pitch=e 1 vol=64
On Note chan= 1 pitch=F#3 vol=64
Off Note chan= 1 pitch=e 4 vol=64
Off Note chan= 1 pitch=f#1 vol=64
Off Note chan= 1 pitch=d#3 vol=64
On Note chan= 1 pitch=D#3 vol=64

4: On Note ch an= 1 pitch=E 0 vol=64
On Note chan= 1 pitch=E 1 vol=64
Off Note chan= 1 pitch=d#3 vol=64
Off Note chan= 1 pitch=f#3 vol=64
On Note chan= 1 pitch=E 1 vol=64
Off Note chan= 1 pitch=e 0 vol=64
Off Note chan= 1 pitch=e 1 vol=64
Off Note chan= 1 pitch=e 1 vol=64

!On Note chan= 1 pitch=G 2 vol=64
1: IOn Note chan= 1 pitch=E 1 vol=64

!Off Note chan= 1 pitch=e 1 vol=64
!On Note chan= 1 pitch=C 2 vol=64
!On Note chan= 1 pitch=D#3 vol=64
!Off Note chan= 1 pitch=c 2 vol=64

37

IOn Note chan= 1 pitch=B#3 vol=64
2: I Off Note chan= 1 pitch=g 2 vol=64

IOff Note chan= 1 pitch=d#3 vol=64
I Off Note chan= 1 pitch=b#3 vol=64
!On Note chan= 1 pitch=E 0 vol=64
!Off Note chan= 1 pitch=e 0 vol=64
!On Note chan= 1 pitch=B#3 vol=64
!On Note chan= 1 pitch=C 3 vol=64
!On Note chan= 1 pitch=E 1 vol=64

3: !Off Note chan= 1 pitch=b#3 vol=64
!Off Note chan= 1 pitch=e 1 vol=64
!On Note chan= 1 pitch=E 0 vol=64
!On Note chan= 1 pitch=E 0 vol=64
!Off Note chan= 1 pitch= 0 vol=64
!Off Note chan= 1 pitch= 0 vol=64
!Off Note chan= 1 pitch=c 3 vol=64

38

H Untitled!

A 1 3
A 1 3
A 7 3
c 1 4
E 1 4
G 1 3
c 1 4
A 3 2
C# 2 3
A 1 3
A 1 3
A 7 3
A 2 2
C# 1 3
G 1 3
c 1 3
c 1 3
E 1 3
F 1 3
G 1 3
F 1 3
E 1 3
c 1 3
c 1 3
c 1 3
F 1 3
c 1 3
F 1 3
G 1 3
A 1 3
F 1 3
F 1 3
A# 1 3
c 1 4
D 1 4
A# 1 3

39

c 1 4
F 1 3
F 1 3
F 1 3
A# 1 3
A# 1 3
A 1 3
G 1 3
F 1 3
F 1 3
E 1 3
D 1 3
F 1 3
A# 1 3
D 1 4
c 1 4
F 1 3
G 1 3
A 1 3
A# 1 3
A 1 3
G 1 3
G 1 3
F 1 3
c 1 3
c 1 3
A 1 2
G 1 3
c 1 3
A 1 2
c 1 3
c 1 3
A# 1 2
A 1 3
D 1 3
A# 1 2
c 1 3
F# 3 3

40

F# 3 3
G 3 3
A 0 0
A 6 1
F# 1 1
A 0 0
B# 2 2
F# 8 3
F# 3 3
F# 3 3
G 3 3
c 2 2
G 8 3
F# 1 1
F# 9 4
F# 9 4
F# 5 0
F# 8 3
F# 1 1
F# 8 3
F# 5 0
F# 9 4
F# 9 4
F# 9 4
F# 8 3
F# 9 4
F# 8 3
F# 1 1
F# 3 3
F# 8 3
F# 8 3
G 2 2
A 0 0
A 3 3
G 2 2
A 0 0
F# 8 3
F# 8 3

41

F# 8 3
G 2 2
G 2 2
F# 3 3
F# 1 1
F# 8 3
F# 8 3
F# 5 0
F# 2 2
F# 8 3
G 2 2
A 3 3
A 0 0
F# 8 3
F# 1 1
F# 3 3
G 2 2
F# 3 3
F# 1 1
F# 1 1
F# 8 3
F# 9 4
F# 9 4
D# 2 2
F# 1 1
F# 9 4
D# 2 2
F# 9 4
F# 9 4
E 1 1
F# 3 3
F# 2 2
E 1 1
F# 9 4
E 7 2
E 7 2
D# 1 1
A 0 0

42

References

[1) [http://www.borg.com/-jglatt/progs/software.htm].

[2) Thomas Benjamin, f\·1ichael Horvit, and Rob<'rt 'J'C'lson. Terhniques
and Materials of Tonal Music unth an Introduction to Twentieth-century
Techniques. \Vads\vorth Publishing Company, Belmont. CA, fourth edi­
tion, 1992.

[3) Amanda Broyles. Implf'mcnt.ation of a genetic algorithm: Gaasp. Oua­
chita Baptist University, Department of ~fath and Computer Scif'nCC',
July 1998.

[4] Dennis Courtney. f\lath and rC'al life: a brirf mtroduction to fractional
dimensions. [http://www. imho. com/grae/ chaos/fraction. html] .

[5] Richard Darst, Judith Palagallo, and Thomas Price. Fractal tilings in
the plane. Mathematics Magazine, 71(1):12 23, February 1998.

[6] Bruce L. Jacob. Composing with genetic algorithms. [http://www.
ee.umd,edu/-blj/algorithmic_composition/icmc . 95] , Septrmber
1995. International ComputC'r fv1usic Conferenc<>.

[7) Al Kelley and Ira Pohl. A Book on C. Addison-\.Yesley, fourth edition,
1998.

[8) Hans Lauwcri<'r. Fractals. Princeton Cniversity PrC'ss, Princeton, l\.J,
1991.

[9] Steven J. Leon. Linear Algebra with Applications. PrC'ntice Hall, Upper
Saddle River, >l"J, fifth edition. 1998.

[10] Peter Stone. posted email from psto(gxs4all.nl.

[11] Chong (.John) Yu. Computer g<>nerated music composition. Department
of electrical engineering and computer science', vlassachusetts Institute
of Technology, Cambridge, \1A, 1996.

43

	MasterPiece: Computer-generated Music through Fractals and Genetic Theory
	Recommended Citation

	tmp.1426558575.pdf.D_8Pw

