
Ouachita Baptist University Ouachita Baptist University 

Scholarly Commons @ Ouachita Scholarly Commons @ Ouachita 

Honors Theses Carl Goodson Honors Program 

2005 

Two Views of the Projective Plane Two Views of the Projective Plane 

Rebecca J. Thomas 
Ouachita Baptist University 

Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses 

 Part of the Analysis Commons, and the Geometry and Topology Commons 

Recommended Citation Recommended Citation 
Thomas, Rebecca J., "Two Views of the Projective Plane" (2005). Honors Theses. 71. 
https://scholarlycommons.obu.edu/honors_theses/71 

This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly 
Commons @ Ouachita. It has been accepted for inclusion in Honors Theses by an authorized administrator of 
Scholarly Commons @ Ouachita. For more information, please contact mortensona@obu.edu. 

https://scholarlycommons.obu.edu/
https://scholarlycommons.obu.edu/honors_theses
https://scholarlycommons.obu.edu/honors
https://scholarlycommons.obu.edu/honors_theses?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.obu.edu/honors_theses/71?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mortensona@obu.edu




c. b \ 

cc? 

Two Views of the Projective Plane 

Rebecca J. Thomas 

April 15, 2005 



0.1 Abstract 

The projective plane is a mathematical object which can be defined in two ways. 
In the following paper, I will explain the two definitions and show how they are 
equivalent by establishing a homeomorphism between the two objects. 

0.2 Introduction and Explanation of Key Terms 

0.2.1 Equivalence Relations 

One of the definitions of the projective plane uses an equivalence relation. An 
equivalence relation is a relation that is reflexive, symmetric, and transitive. 

The simplest example of an equivalence relation is the equals sign, "=." 
The equals sign is a relation because it demonstrates a relationship between 
two objects. For example, 4 = 4 or 1 + 3 = 4. 

The equals sign is an equivalence relation because the relation is reflexive, i.e. 
an object "equals" itself: 4 = 4. The equals sign is symmetric because the order 
of the two objects being compared can be reversed: 1 + 3 = 4 automatically 
means 4 = 1 + 3. Finally, the equals sign is transitive because "equals" can be 
transferred. For example, if you know 1 + 3 = 4 and 4 = 2 + 2, then you also 
know that 1 + 3 = 2 + 2. 

0.2.2 Geometry and Topology 

The other definition of the projective plane is topological. In this paper, I will 
be concerned with the topological properties of the two objects I am comparing. 
Topological properties are the properties of an object that are preserved under 
deformation. If I can establish a homeomorphism between the two projective 
planes, the topological properties will be preserved, and the two objects can be 
called equivalent. 

Geometric properties are those which are not preserved by deformation. 
For instance, one definition of the projective plane causes it to have spherical 
geometry. The geometry of the other definition is another matter entirely. 

0.2.3 Mobius Bands 

I will mention these curious objects briefly in my discussion on orientation. 
"Mobius band" is another name for the familiar Mobius strip. 

0.3 The Projective Plane as an Equivalence Re­
lation 

The projective plane is a partition of R 3minus the origin into all lines passing 
through but not including the origin. What follows is a formal definition: 
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LetT= {(x,y,z) E R 3 i(x,y,z) :j; (0,0,0)}. Define a relation, ....... , on T by 
(xt, Y1, zt) ""(x2, Y2, z2) if there is a nonzero real number .A such that x1 = .Ax2, 
Y1 = .Ay2, and z1 = .Az2. 

The concept of this projective plane, which will be referred to as T I "" is 
well-defined, as the following proposition shows: 

Proposition 0.3.1 "" is an equivalence relation on T. 

To show a"" a, where a E R 3, let .A = 1. 
Suppose (xl,y1,zl) "" (x2,y2,z2) by .A. Let 6 = .A- 1

. Then, x2 = 6x1, 
Y2 = 6y1, and z2 = 6z1. So, (x2,y2,z2) "'(xt , Yl,zt). 

Suppose (xl,Yl,zl) ""(x2,y2,z2) by ..\1 and (x2,y2,z2)"" (x3,y3,z3) by ..\2. 
Then, x1 = .A1x2 and x2 = .A2x3. Then, x1 =.At (.A2x3). Let () = ..\1..\2, a nonzero 
real number. Then, x1 = Bx3 . Similarly, Y1 = By3, and z1 = Bz3. Therefore, "" 
is transitive. Thus, it is an equivalence relation. 0 

0.3.1 A Note on the Geometry of the Equivalence Classes 

The equivalence class [x, y, z] is a line in R 3with the origin removed that passes 
through (x,y,z) and (0,0,0). Consider the vector< x,y,z >with initial point 
(0,0,0) and ending point (x,y,z). Vectors with a common initial point are 
collinear if they are parallel, that is, if they are equal up to a scalar multiple. 
Then, any two a, b E R 3 are collinear if they are in the same equivalence class 
(the scalar multiple is .A), and all points on one of these lines, excepting the 
origin, are in the equivalence classes. 

Thus, the equivalence relation partitions the space into an infinite number of 
lines radiating from the origin. These equivalence classes are called the points of 
the projective plane. See Figure 1 for an illustration of a few of the equivalence 
classes, points, in T I ""· 

0.4 The Projective Plane as a Surface 

The projective plane is a hemisphere with antipodal (opposite) points on the 
rim glued. It is a closed, homogenous, and non-orientable surface with local 
spherical geometry. I t will be referred to as P 2. In Figure 2, the gluing is 
represented by a dotted line on one side of the rim and a solid line on the other 
side. 

0.4.1 A Note on Gluing and Orientation 

Gluing is the abstract connection of points. It is important to note that physical 
connection of the points need not be possible, and indeed this is the case with the 
projective plane. In Figure 3, two sets of antipodal points, points at either end 
of a diameter, are shown with lines connecting the points that will be connected 
by the gluing. Note that the two lines cross, a demonstration of a property that 
makes the projective plane so interesting. 
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Figure 1: The Projective Plane, i.e. T/ "'· 

.. 

Figure 2: The Projective Plane, i.e. P 2. 
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Figure 3: Two Antipodal Points 

Visualize that the two points labelled "A" and "B" are the endpoints of the 
line segment that runs along the rim from A to B counterclockwise. (Please see 
the discussion on lines in a later section.) IT you look at the line segment from 
the side, point B is on the right, and point A is on the left. Imagine moving 
the line segment towards the antipodal points. (Of course, this operation is 
instantaneous.) The two endpoints switch places. Now, slide the line segment 
around the spherical surface and back to its original location. Point A is now 
on the right, and point B is on the left. (This is demonstrated in the picture 
by the different colors of the endpoints.) This curious result of the gluing is 
represented in Figure 3 and Figure 2 by a set of arrows, one on either side of 
the rim, pointing in opposite directions. 

A path that an object can slide along and return with the left- and right­
hand sides reversed is called orientation-reversing. IT a surface contains an 
orientation-reversing path, a Mobius band, it is called non-orientable. Thus, 
the following proposition is proven: 

Proposition 0.4.1 The projective plane is non-orientable. 

The projective plane contains a M obiiis band. 0 

0.5 The Correspondence 

The following steps will form the basis for the correspondence: From T f "', 
select a representative from each equivalence class. Let this set of points be 
called S'. For each (x,y ,z) E S' choose instead the point (Ax,Ay,Az), where 
A- 1 = Jx2 + y2 + z2. Note that all points now inS' lie on the unit sphere in 
R 3 centered at the origin because of the value of A. Form the set S from S' as 
follows: 

• If for (x, y, z), z > 0, let (x, y, z) be the representative point inS. 
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• Ufor(x,y,z),z=Oand 

1. y > 0, let (x, y, O)be the representative point. 

2. y < 0, pick ( -x, -y, 0). 

3. y = 0, let (x, 0, 0) be the point. 

• If for (x,y,z), z < 0, pick (-x,-y,-z). 

Note that in R 3 , the set S forms a hemisphere in the upper four octants with 
the boundary from and including the point on the -x-axis through the-y-axis 
up to the positive x-axis (but not including that point) removed. Since nothing 
except multiplying components by real, nonzero values has been done to the 
members of S', S also contains a single representative from each equivalence 
class. 

Note that S matches the description of P 2 . The boundary points included in 
S are equivalent under "' to the antipodal points. In this sense, the rim points 
are glued. 

Proposition 0.5 .1 P 2 is homeomorphic to Tl "'· 

Let I : P 2 -tTl"' such that l ((x,y,z) E P 2 ) = [x,y,z] E Tl "'· Suppose 
l((a,b,c)) = l((x,y,z)). Then, [a,b,c] = [x,y,z]. But, S contains only one 
point from each equivalence class, so..\ relating (a, b, c) to (x, y, z) inTI "'must 
be 1. Therefore, I is one-to-one. 

Let [x,y,z] be a member of Tl "'· i have shown that it is possible to 
find (xl,yl,zl) related to (x,y,z) by"' that is inS. Then, l((xl,Yl,zl)) = 
[x1,Y1,zt] = [x,y,z]. I is therefore onto. 

So, I is a one-to-one correspondence between P 2 and T I "'· 
In order for I to be a homeomorphism, it must be continuous, and it's inverse 

must be continuous. In order for the function to be continuous it must send 
open sets to open sets, and the proof of this presents a problem because we have 
not yet defined what the open sets ofT I "' are. 

Consider an open ball in P 2 . By the mapping, the open ball maps to an open 
cone in T I "', which is a logical definition of an open set. Please see Figure 4 
for an example of an open ball in T I "'. Defining the open cones as open balls, 
both I and its inverse, which exists because I is a one-to-one correspondence, 
are continuous. 

So, I is a homeomorphism between P 2 and T I "'· 0 

0.6 Lines 

A great circle is defined as a circle which is the intersection of a sphere with a 
plane through its center. In this case, the sphere is P 2 and the planes are those 
through the origin. 

In normal three-dimensional space, ax + by + cz = 0 is the general equation 
of a plane through (0, 0, 0) with direction < a, b, c >. By selecting appropriate 
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Figure 4: A Solid Open Cone Is Defined to be an Open Ball 

representatives (the ones comprising S), one can see that the intersection of one 
of these planes with P 2is a great circle on P 2 . 

For great circles to be lines, they must be the shortest distance between two 
points in P 2 . 

Proposition 0.6.1 Great circles are the lines in P 2 . 

On a normal sphere in regular space, a great circle contains the antipodal 
points (x, y, z) and ( -x, -y, -z) because xa + yb + ac = 0 implies that - xa ­
yb - zc = 0. So, opposite points on a great circle always lie on a diameter. In 
P 2 , the opposite points of the diameter are identified, and so the great circle is 
a loop. 

Let x and y be two points in P 2 . A great circle between them has curvature 
k = 1/r, where r is the distance from the center of the hemisphere, the origin. 

Any point on the great circle defined by x andy has the property that r = 1, 
so k=l. To prove that a great circle is a line, it is sufficient to prove that is has 
minimum curvature. 

~ote that if we defined an alternate "line" which traverses the "interior" of 
P 2 , then r is smaller. Therefore, k would be larger. This is not a line. 

Therefore, the great circles are the lines. This implies that P 2has spherical 
geometry. 0 

Proposition 0.6.2 P 2 has local spherical geometry. 

Great circles are lines in P 2 . D 
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Figure 5: A Line in Tl "",Shown in Normal Space as a Plane 

In order to show that lines in P 2 map to lines in T I "", I must prove that 
these planes minus the origin in R 3can be defined as lines in the projective 
plane, T I ""· I will show that they are well-defined. Geometrically, if we choose 
different points to be the representatives of the two equivalence classes, will we 
still get the same plane in R 3? 

Proposition 0.6.3 L = {[x, y, z] E T I "" lax+ by+ cz = 0} is well-defined. 

Let (a, b, c) be in T. Suppose (x1, Y1, z1), (xz, Y2, z2) are in T and (x1, YI, z1) 
"" (xz,y2,zz). If ax1 + by1 + cz1 = 0, then a..\x1 + b..\y1 + c..\z1 = 0, then 
ax2 + by2 + cz2 = 0 . So, these two points in the equivalence set define the same 
plane in R 3 . 0 

See Figure 5. Note that A, B, and the origin define the plane. We have just 
proven that any A or B in their equivalence classes may be selected, and the 
same plane will be defined. 

Proposition 0.6.4 Two distinct lines in T I "" always intersect at one point in 
Tl ""· 

Given two distinct lines ax+ by+ cz = 0 and px + qy + rz = 0 in T I ....... , their 
intersection point is (br- cq, cp- ar, aq - bp]. This is easy to check. D 

So, the plane definition is a valid definition for the lines in T I ""· I have 
mentioned that lines in P 2 are the intersection of planes in R 3containing the 
origin with the hemisphere that we mapped points to in the correspondence. 
These planes in R 3 are lines in T I "'· Thus, as expected lines map to lines. 

0. 7 Conclusion 

In this paper, I have defined and explained the two definitions of the projective 
plane and explored some interesting properties of each. I have proven that the 
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two definitions of the projective plane, T / "" and P 2 , are equivalent and shown 
that the correspondence maps lines to lines. 
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