Ouachita Baptist University

Scholarly Commons @ Ouachita

Scholars Day Conference

Virtual Scholars Day 2020

May 1st, 12:00 AM - 12:00 AM

A Paradox Solved (Or 3)

Lee Grisham *Ouachita Baptist University*

Follow this and additional works at: https://scholarlycommons.obu.edu/scholars_day_conference

Part of the Logic and Foundations Commons

Grisham, Lee, "A Paradox Solved (Or 3)" (2020). *Scholars Day Conference*. 4. https://scholarlycommons.obu.edu/scholars_day_conference/2020/natural_sciences/4

This Presentation is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Scholars Day Conference by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact mortensona@obu.edu.

A Paradox Solved (Or 3)

By Lee Grisham

Why the Interest?

- Introduced at a Young Age
 - Grandfather Paradox and Time Travel
- Researched More Myself
- Great for Passing Time
 - Something to Do
 - No Materials Required
- Good Exercise for the Mind

What Does Math Have to Do With It?

- Stumped for Years
 - Understood the Problem, But Could Never Figure Out a Solution
 - Worked Through Some of Them Thousands of Times
- Calculus I Idea
 - Teacher's Aide in Cal I Class
 - Took the Idea to Other Paradoxes
- The Mathematical Approach
 - Following Sequence and Logic Every Time Was Insanity
 - Of Course It Led to the Impossible Outcome; That Was the Point!
 - Needed to Change My Approach
 - Look at the Paradoxes Through a Mathematical Lens

The Arrow Problem

- At any instant after an arrow has been shot, it is still. The location is not changing.
- The next instant, it must still be in the same spot, as it was not moving in the previous instant.
- Thus, the motion is nonexistent and the arrow could not move through the air.
- This reasoning can be applied to all objects, so it logically follows that motion cannot exist.

The Arrow Solution: Derivatives

- Math Behind Derivatives Not Important for This
 - It's What They Are and What They Do
- What is a Derivative?
 - Tells the Slope of a Line at Any Given Point
 - Even Useable for Curves and Graphs with Changing Slopes
- How Does This Apply to the Arrow Paradox?
 - Distance Over Time Graphs
 - Instantaneous Speed
- Okay, But Where's The Problem?
 - Language
 - Hidden Division by Zero

The Arrow Solution Part II

• Language

- Unchanging Location vs Motion
 - Unchanging Location Does NOT Imply Motionlessness
 - Unchanging Location Over Time DOES Imply Motionlessness
- Hidden Division By Zero
 - In an Instant, No Time Passes
 - Speed = Distance Divided by Time
 - Thus, Cannot Say 0 Distance Over 0 Time Implies 0 Speed
- Consecutive Instants
 - Some Time Must Pass Between Instants
 - Otherwise, Same Instant
 - Instantaneous Speed Applies to This Time, However Short
- Thus Premise of Arrow Being Motionless is False, And the Arrow is Broken.

Achilles and the Tortoise

- There is a race between a tortoise and the legendary hero Achilles.
- The tortoise gets a head start, then the race begins.
- By the time Achilles gets to where the tortoise began, the tortoise will have gone some distance, and still be ahead.
- Again, by the time Achilles gets to the new distance of the tortoise, it will have moved some small distance further.
- This repeats infinitely, and leads to Achilles never catching the tortoise, as it will always have moved slightly further when Achilles reaches its previous spot.

Achilles Solution: Limits

• Obvious Solution: Graphing

- Shows When Achilles Would Catch the Tortoise
- Does Not break Down the Paradox or Even Argue the Logic
- Want to Know Where the Problem Is and How to Beat It

• What is a Limit?

- Simple Definition: A value an output gets closer and closer to as you approach a specific value of an input
- Useful as you get close, but not at the moment you reach the point
- Can Exist at That Point, But May Not
- How Does this Solve the Problem?
 - Hides Limits Through the Language, Gives Implicit Boundaries

Achilles Solution Part II

• The Language

- The Final Event is Where Achilles Would Catch the Tortoise
- Limits Maximum Distance and Time
 - Limits Achilles to the Distance Travelled By the Tortoise
 - Takes the Limit of Achilles as He APPROACHES the Tortoise
 - Limits Time to the Point Right Before Achilles Would Catch the Tortoise
- Comparing Graphs
 - Real Graph of the Race
 - Graph Made by Following the Logic
 - Some Limits Can Be Reached, and the Points Do Exist
 - Has a Hole at the Point Where Achilles Catches the Tortoise
- Thus, Achilles Catches the Tortoise and We Have Defeated Achilles.

Race to the Finish Vs Race to the Tortoise

Time (Seconds)

Time (Seconds)

The Dichotomy

- Atalanta wants to take a walk to the end of a path.
- Before reaching the end, she must reach halfway.
- Before that, she must get halfway of halfway.
- This repeats, so she must always go some smaller distance before reaching the next distance.
- Thus, Atalanta can never reach the end of the path, or even begin, as there is so first distance she can travel.

Dichotomy Solution: Limits (But Different)

• Similarities To the Achilles Paradox

- Breaks Down Distance
- Hidden Limits
- Differences From the Achilles Paradox
 - Reachable vs Unreachable Limits
 - Maximum vs Minimum Limits
 - Starting Point vs Ending Point
- Thus, a Different Approach Still Using Limits
 - Minimum Limit Cannot Be Reached
 - How the Starting Point Hides This
 - Other Mathematical Steps

Dichotomy Solution Part II

• Minimum Limit

- Because there is a set starting point, the minimum limit for distance travelled is zero.
 - We know there is some velocity from walking, so Atalanta will have moved from the starting point immediately after time has started.

Other Mathematical Steps to a Solution

- Splitting Distance Infinitely
 - Implicitly Splits Time Infinitely
 - Must Take Distance Over an Interval of Time
 - Interval Must Be Greater Than Zero
 - Leads to Limit of Zero Never Being Reached, Problem Solved
- Thus, Atalanta Begins Her Walk And We Finish Ours.