Ouachita Baptist University
Scholarly Commons @ Ouachita

Scholars Day Conference

May 1st, 12:00 AM - 12:00 AM

A Paradox Solved (Or 3)

Lee Grisham
Ouachita Baptist University

Follow this and additional works at: https://scholarlycommons.obu.edu/scholars_day_conference
Part of the Logic and Foundations Commons

Grisham, Lee, "A Paradox Solved (Or 3)" (2020). Scholars Day Conference. 4.
https://scholarlycommons.obu.edu/scholars_day_conference/2020/natural_sciences/4

This Presentation is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Scholars Day Conference by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact mortensona@obu.edu.
\qquad -

Why the Interest?

- Introduced at a Young Age
- Grandfather Paradox and Time Travel
- Researched More Myself
- Great for Passing Time
- Something to Do
- No Materials Required
- Good Exercise for the Mind

What Does Math Have to Do With It?

- Stumped for Years
- Understood the Problem, But Could Never Figure Out a Solution
- Worked Through Some of Them Thousands of Times
- Calculus I Idea
- Teacher's Aide in Cal I Class
- Took the Idea to Other Paradoxes
- The Mathematical Approach
- Following Sequence and Logic Every Time Was Insanity
- Of Course It Led to the Impossible Outcome; That Was the Point!
- Needed to Change My Approach
- Look at the Paradoxes Through a Mathematical Lens

The Arrow Problem

- At any instant after an arrow has been shot, it is still. The location is not changing.
- The next instant, it must still be in the same spot, as it was not moving in the previous instant.
- Thus, the motion is nonexistent and the arrow could not move through the air.
- This reasoning can be applied to all objects, so it logically follows that motion cannot exist.

The Arrow Solution: Derivatives

- Math Behind Derivatives Not Important for This
- It's What They Are and What They Do
- What is a Derivative?
- Tells the Slope of a Line at Any Given Point
- Even Useable for Curves and Graphs with Changing Slopes
- How Does This Apply to the Arrow Paradox?
- Distance Over Time Graphs
- Instantaneous Speed
- Okay, But Where's The Problem?
- Language
- Hidden Division by Zero

The Arrow Solution Part II

- Language
- Unchanging Location vs Motion
- Unchanging Location Does NOT Imply Motionlessness
- Unchanging Location Over Time DOES Imply Motionlessness
- Hidden Division By Zero
- In an Instant, No Time Passes
- Speed = Distance Divided by Time
- Thus, Cannot Say 0 Distance Over 0 Time Implies 0 Speed
- Consecutive Instants
- Some Time Must Pass Between Instants
- Otherwise, Same Instant
- Instantaneous Speed Applies to This Time, However Short
- Thus Premise of Arrow Being Motionless is False, And the Arrow is Broken.

Achilles and the Tortoise

- There is a race between a tortoise and the legendary hero Achilles.
- The tortoise gets a head start, then the race begins.
- By the time Achilles gets to where the tortoise began, the tortoise will have gone some distance, and still be ahead.
- Again, by the time Achilles gets to the new distance of the tortoise, it will have moved some small distance further.
- This repeats infinitely, and leads to Achilles never catching the tortoise, as it will always have moved slightly further when Achilles reaches its previous spot.

Achilles Solution: Limits

- Obvious Solution: Graphing
- Shows When Achilles Would Catch the Tortoise
- Does Not break Down the Paradox or Even Argue the Logic
- Want to Know Where the Problem Is and How to Beat It
-What is a Limit?
- Simple Definition: A value an output gets closer and closer to as you approach a specific value of an input
- Useful as you get close, but not at the moment you reach the point
- Can Exist at That Point, But May Not
- How Does this Solve the Problem?
- Hides Limits Through the Language, Gives Implicit Boundaries

Achilles Solution Part II

- The Language
- The Final Event is Where Achilles Would Catch the Tortoise
- Limits Maximum Distance and Time
- Limits Achilles to the Distance Travelled By the Tortoise
- Takes the Limit of Achilles as He APPROACHES the Tortoise
- Limits Time to the Point Right Before Achilles Would Catch the Tortoise
- Comparing Graphs
- Real Graph of the Race
- Graph Made by Following the Logic
- Some Limits Can Be Reached, and the Points Do Exist
- Has a Hole at the Point Where Achilles Catches the Tortoise
- Thus, Achilles Catches the Tortoise and We Have Defeated Achilles.

Race to the Finish Vs Race to the Tortoise

The Dichotomy

- Atalanta wants to take a walk to the end of a path.
- Before reaching the end, she must reach halfway.
- Before that, she must get halfway of halfway.
- This repeats, so she must always go some smaller distance before reaching the next distance.
- Thus, Atalanta can never reach the end of the path, or even begin, as there is so first distance she can travel.

Dichotomy Solution: Limits (But Different)

- Similarities To the Achilles Paradox
- Breaks Down Distance
- Hidden Limits
- Differences From the Achilles Paradox
- Reachable vs Unreachable Limits
- Maximum vs Minimum Limits
- Starting Point vs Ending Point
- Thus, a Different Approach Still Using Limits
- Minimum Limit Cannot Be Reached
- How the Starting Point Hides This
- Other Mathematical Steps

Dichotomy Solution Part II

- Minimum Limit
- Because there is a set starting point, the minimum limit for distance travelled is zero.
- We know there is some velocity from walking, so Atalanta will have moved from the starting point immediately after time has started.
- Other Mathematical Steps to a Solution
- Splitting Distance Infinitely
- Implicitly Splits Time Infinitely
- Must Take Distance Over an Interval of Time
- Interval Must Be Greater Than Zero
- Leads to Limit of Zero Never Being Reached, Problem Solved
- Thus, Atalanta Begins Her Walk And We Finish Ours.

