Ouachita Baptist University

Scholarly Commons @ Ouachita

Scholars Day Conference

Virtual Scholars Day 2020

May 1st, 12:00 AM - 12:00 AM

Developing a New Water-Soluble Porphyrin as a Potential Photodynamic Cancer Therapy Agent

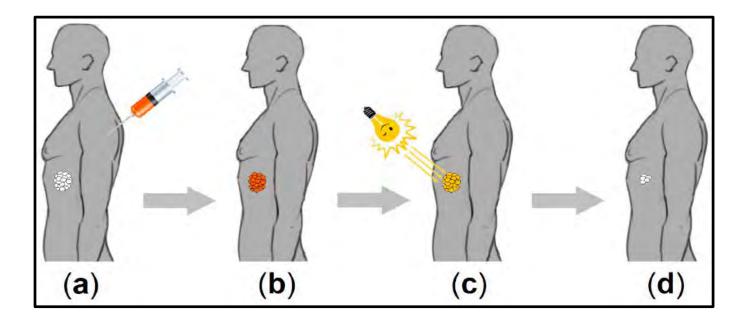
Catherine Shirley Ouachita Baptist University

Follow this and additional works at: https://scholarlycommons.obu.edu/scholars_day_conference

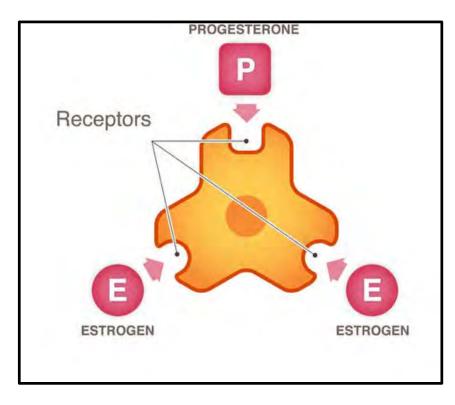
Part of the Chemistry Commons

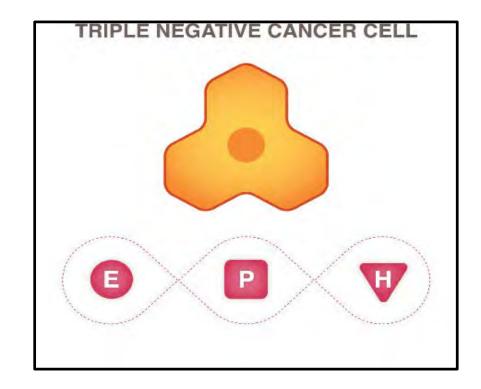
Shirley, Catherine, "Developing a New Water-Soluble Porphyrin as a Potential Photodynamic Cancer Therapy Agent" (2020). *Scholars Day Conference*. 8. https://scholarlycommons.obu.edu/scholars_day_conference/2020/honors_theses/8

This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Scholars Day Conference by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact mortensona@obu.edu.


Developing a New Water-Soluble Porphyrin as a Potential Photodynamic Cancer Therapy Agent

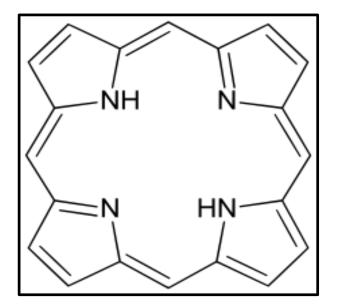
A SENIOR THESIS BY CATHERINE L SHIRLEY


Background


What is Photodynamic Therapy?

Photodynamic Therapy (PDT): treating cancer with light +a photosensitive compound

Why PDT?



1

What are Porphyrins?

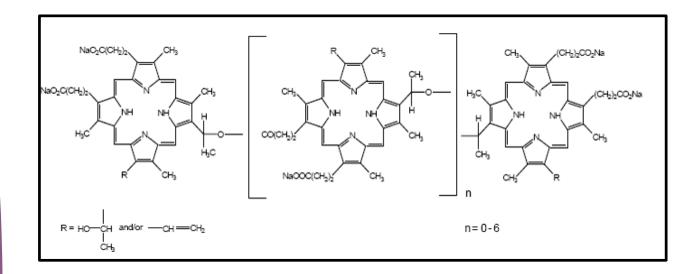
Ę

The structure of a porphyrin molecule. Chemical formula $C_{20}H_{14}N_4$

- ► Known for their role in hemoglobin
- Alternating single and double bonds give aromaticity and stabilization
- Create singlet, molecular oxygen, resulting in cytotoxicity of the tumor tissue cells

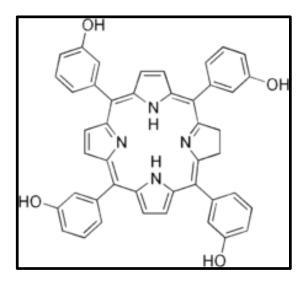
How is PDT Currently Being Used?

Three Photosensitizers

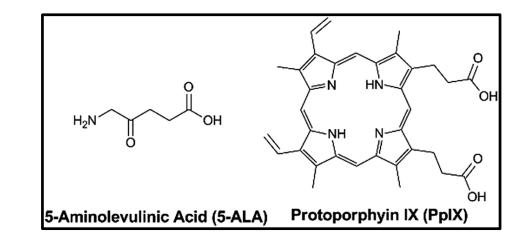


Foscan®

5-Aminolevulinic Acid

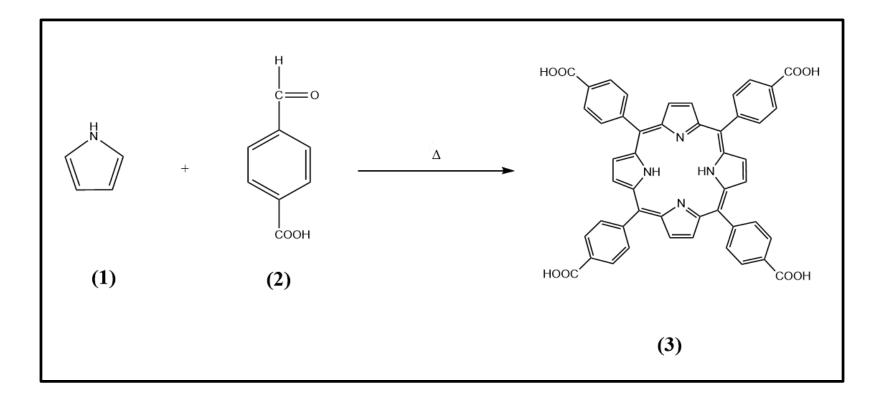


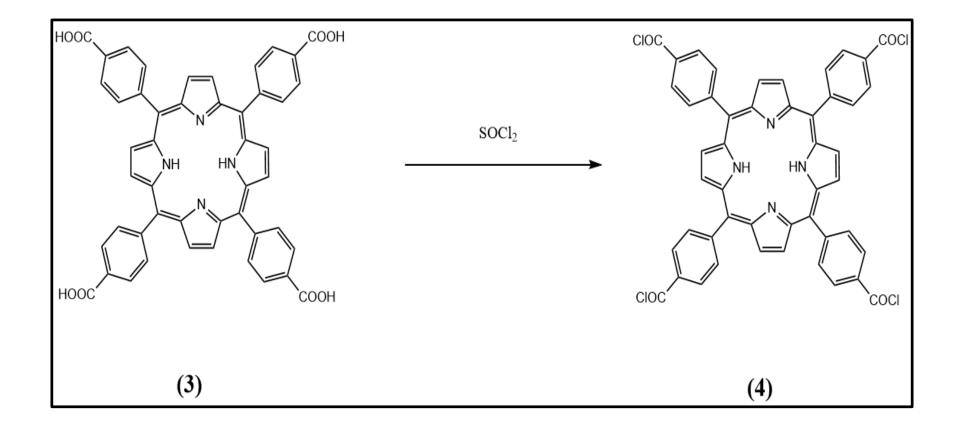
Photofrin®


- Most studied photosensitive agent
- Reliable and easily activated
- Prolonged skin sensitivity

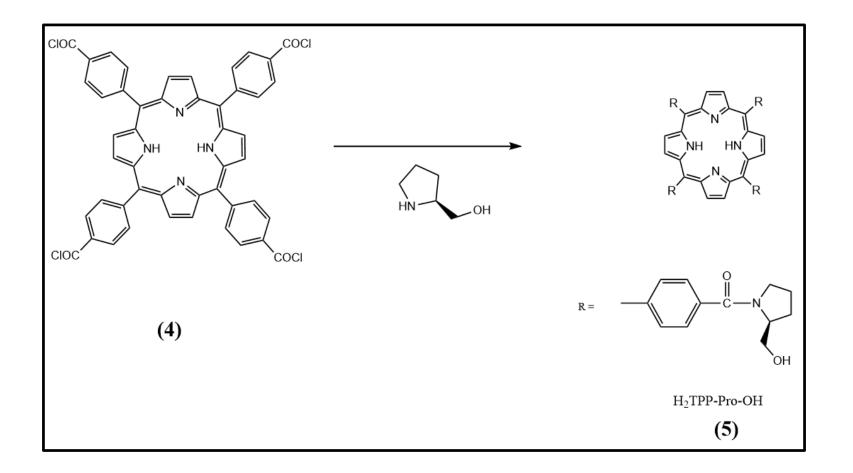
Foscan®

- Great tumor selectivity and deeper light penetration
- Only approved in Europe

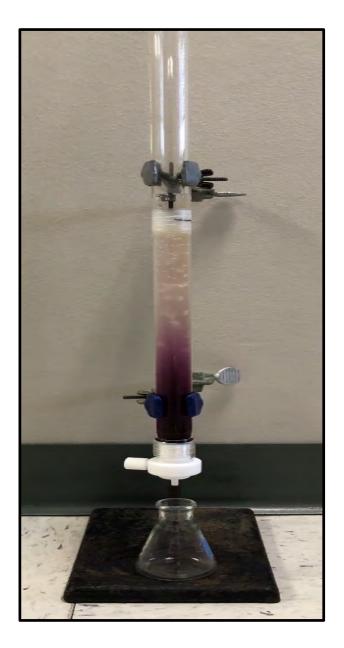

5-Aminolevulinic Acid


- Only for superficial lesions
- Clears from body in 48 hours
- Not effective for deep tumors

Methods: Porphyrin Synthesis

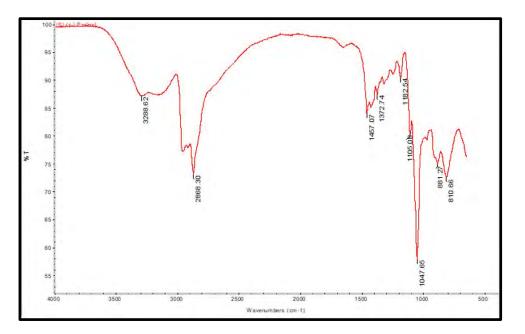

Formation of H₂TPPC

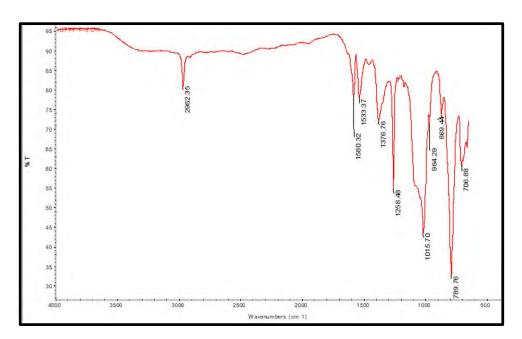
Formation of the Acid-Chloride Porphyrin


Formation of the Final Product, H₂TPP-Pro-OH

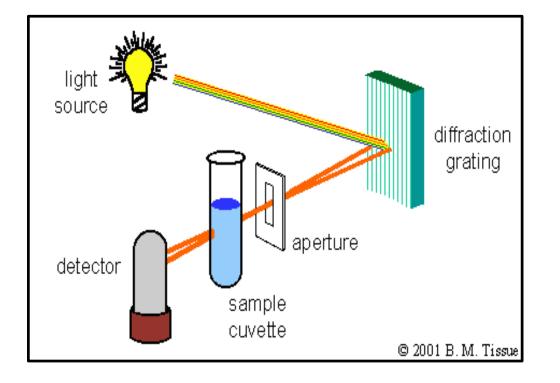
Purification

Two Methods to Purify


Sephadex LH-20 Sephadex G-50


Characterization and Results

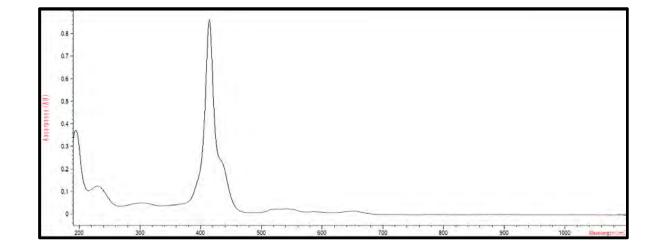
Infrared Spectroscopy


Infrared results for (S)-(+)-prolinol.

Infrared results for H₂TPP-Pro-OH.

Ultraviolet-Visible Spectroscopy

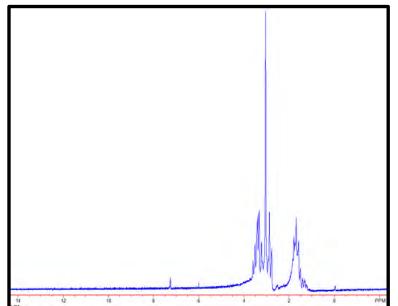
UV-Vis


Spectroscopy diagram showing how light is transmitted

Ultraviolet-Visible Spectroscopy

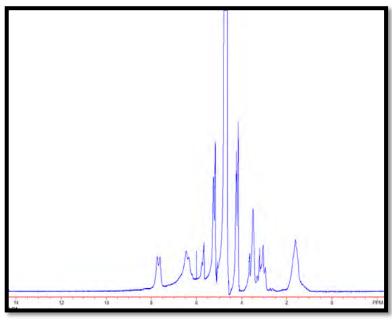
Top: UV-Vis results for H₂TPP-Pro-OH.

Bottom: Peaks (nm) and epsilon $_{(\epsilon)}$ values for the UV-vis spectroscopy of H₂TPP-Pro-OH. Epsilon values calculated using Beer's Law: $A = \varepsilon c I$.

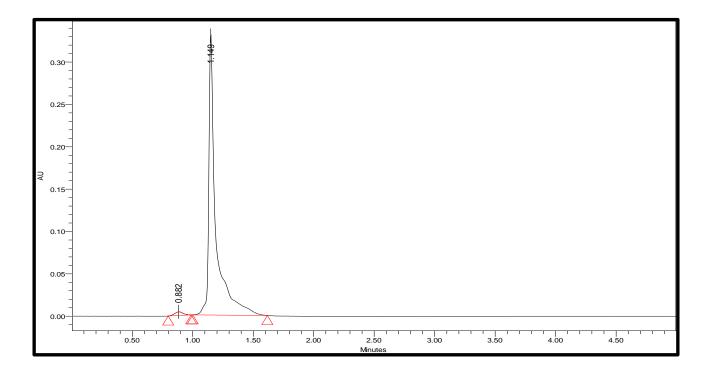


Peaks (nm)	Molar Absorptivity Coefficient, ε (cm ⁻¹ mM ⁻¹)
414	361
518	10.3
555	6.32
581	5.66
637	5.03

¹H Nuclear Magnetic Resonance Spectroscopy


Results from ¹H NMR spectroscopy of the free amine,

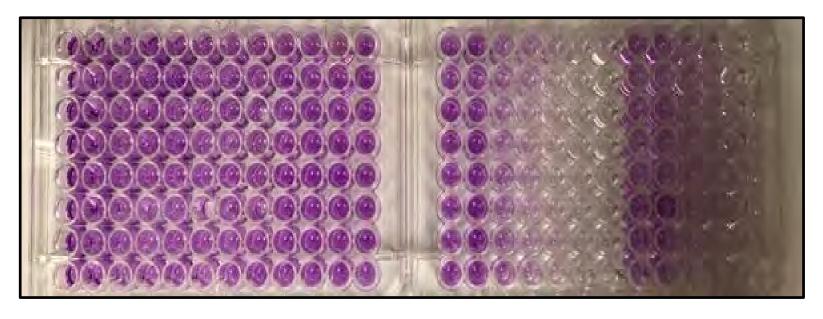
(S)-(+)-prolinol, in CDCl₃.

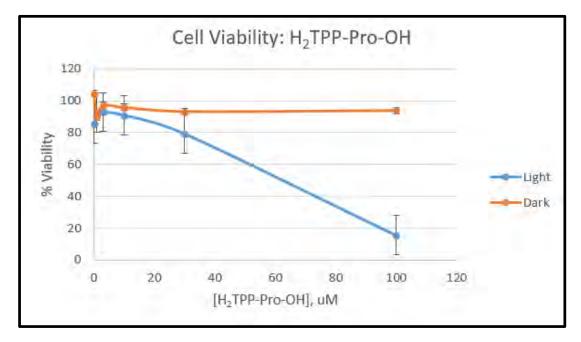


Results from ¹H NMR spectroscopy of final product,

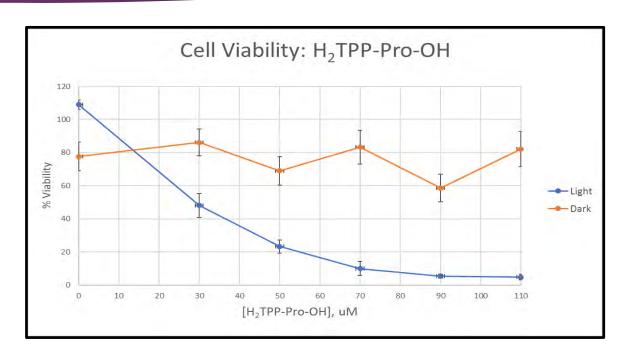
 H_2 TPP-Pro-OH, in D_2 O.

High Performance Liquid Chromatography


► HPLC results for H₂TPP-Pro-OH indicating 98% purity



MTT Assay Procedure


- Method of measuring cellular metabolic activity and determining cell viability
- MTT assay results after 72 hours of incubation. The left plate was entirely in dark conditions, while the right plate was exposed to light. The purple color indicates living cells.

MTT Assay Results

Spectrophotometric MTT assay results for trial one of the light and dark 96-well plates. The porphyrin concentrations used were 1, 3, 10, 30, and 100 µM

Spectrophotometric MTT assay results for trial two of the light and dark 96-well plates. The porphyrin concentrations used were 30, 50, 70, 90, and 110 µM

Conclusions

Future Work

Thank you!

DR. JOE BRADSHAW DR. TIM KNIGHT DR. TIM HAYES DR. TERRY CARTER TRAVIS HANKINS ALEX PODGUZOV

References

- 1. Mihoub, Ben, et al. "Use of Cyclodextrins in Anticancer Photodynamic Therapy Treatment." MDPI, Multidisciplinary Digital Publishing Institute, 2 Aug. 2018, www.mdpi.com/1420-3049/23/8/1936/htm#cite.
- 2. "Photodynamic Therapy for Cancer." National Cancer Institute, www.cancer.gov/aboutcancer/treatment/types/surgery/photodynamic-fact-sheet.
- 3. "Photodynamic Therapy." American Cancer Society, www.cancer.org/treatment/treatments-and-sideeffects/treatment-types/photodynamic-therapy.html.
- 4. "Rajiv Gandhi Centre for Biotechnology." Rajiv Gandhi Centre for Biotechnology (RGCB), Department of Biotechnology, Government of India, rgcb.res.in/scientist_research.php?fid=45.
- ► 5. "Triple Negative Breast Cancer." National Breast Cancer Foundation, www.nationalbreastcancer.org/triplenegative-breast-cancer.
- 6. "Triple-Negative Breast Cancer: Overview, Treatment, and More." Breastcancer.org, www.breastcancer.org/symptoms/diagnosis/trip_neg.
- 7. "Hemoglobin." Hemoglobin, www.chm.bris.ac.uk/motm/hemoglobin/hemoglobv.htm.
- 8. Kou, Jiayuan, et al. "Porphyrin Photosensitizers in Photodynamic Therapy and Its Applications." Oncotarget, Impact Journals LLC, 11 Aug. 2017, www.ncbi.nlm.nih.gov/pmc/articles/PMC5655312/.
- 9. Donostia International Physics Center, and Dipc. "Tracking the Tautomerization of a Single Molecule in Space and Time." Mapping Ignarance, Dinchosting, 27 Feb. 2020, mappinggnorance.org/2020/02/27/tracking-thetautomerization-of-a-single-molecule-in-space-and-time/.
- 10. Vaupel, Peter, et al. Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review. 1 Dec. 1989, cancerres.aacrjournals.org/content/49/23/6449.full-text.pdf.
- 11. Pushpan, S K, et al. "Porphyrins in Photodynamic Therapy a Search for Ideal Photosensitizers." Current Medicinal Chemistry. Anti-Cancer Agents, U.S. National Library of Medicine, Mar. 2002, www.ncbi.nlm.nih.gov/pubmed/126/8743.
- 12. "Visual Guide to Cancers of the Head and Neck." WebMD, WebMD, www.webmd.com/cancer/ss/slideshowhead-neck-cancers.
- 13. Konopka, K., and T. Goslinski. "Photodynamic Therapy in Dentistry." Journal of Dental Research, vol. 86, no. 8, 2007, pp. 694–707., doi:10.1177/154405910708600803.

- 14. "Head and Neck Cancer Treatment, Symptoms & Causes." MedicineNet, www.medicinenet.com/head_and_neck_cancer/article.htm#how_common_are_head_and_neck_cancers.
- 15. "Photofrin (Porfimer Sodium): Uses, Dosage, Side Effects, Interactions, Warning." RxList, RxList, 21 Jan. 2020, www.rxlist.com/photofrin-drug.htm#description.
- ▶ 16. "Introduction." Photoimmune Discoveries, photoimmune.org/introduction/.
- 17. "Temoporfin." Wikipedia, Wikimedia Foundation, 9 Aug. 2019, en.wikipedia.org/wiki/Temoporfin.
- 18. Biel, Merrill A. "Photodynamic Therapy Treatment of Early Oral and Laryngeal Cancers." Photochemistry and Photobiology, vol. 83, no. 5, 2007, pp. 1063–1068., doi:10.1111/j.1751-1097.2007.00153.x.
- 19. Plaunt, Adam J., et al. "Chemically Triggered Release of 5-Aminolevulinic Acid from Liposomes." RSC Advances, The Royal Society of Chemistry, 29 Oct. 2014, pubs.rsc.org/en/content/articlelanding/2014/RA/c4ra10340h#!divAbstract.
- 20. Dougherty, Thomas J. "An Update on Photodynamic Therapy Applications." Journal of Clinical Laser Medicine & Surgery, vol. 20, no. 1, 2002, pp. 3–7.
- 21. "What Is Infrared Spectroscopy?" Medallion Labs, 10 Sept. 2018, <u>www.medallionlabs.com/blog/infrared-spectroscopy/.</u>
- 22. Reusch, William. "Visible and Ultraviolet Spectroscopy." UV-Visible Spectroscopy, 5 May 2013, www2.chemistry.msu.edu/faculty/reusch/virtfxtjml/spectrpy/uv-vis/spectrum.htm.
- 23. "Single-Beam UV-Vis Spectrophotometer." CHP Single-Beam UV-Vis Spectrophotometer, 2000, www.tissuegroup.chem.vt.edu/chem-ed/spec/uv-vis/singlebeam.html.
- 24. Proton Nuclear Magnetic Resonance Spectroscopy. www.chem.ucla.edu/~harding/notes/notes 14C nmr02.pdf.
- 25. "High Performance Liquid Chromatography (HPLC)." HIQ, hiq.lindegas.com/en/analytical_methods/liquid_chromatography/high_performance_liquid_chromatography.html.
- 26. Barnabe. "Cell Viability Assays: MTT Assay Application and Protocol." Cell Viability Assays: MTT Assay Application and Protocol, blog.guartzy.com/2017/05/01/cell-viability-assays-mtt-protocol.