Summer 2018

Assessment of Nutrition Status of Adults Using the Nutrition Focused Physical Examination

Kaycee Patrick
Ouachita Baptist University

Anna Claire Goodroe
Ouachita Baptist University

Detri Brech
Ouachita Baptist University

Follow this and additional works at: https://scholarlycommons.obu.edu/dietetics

Recommended Citation
Patrick, Kaycee; Goodroe, Anna Claire; and Brech, Detri, "Assessment of Nutrition Status of Adults Using the Nutrition Focused Physical Examination" (2018). Department of Dietetics and Nutrition. 6.
https://scholarlycommons.obu.edu/dietetics/6

This Class Paper is brought to you for free and open access by the J.D. Patterson School of Natural Sciences at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Department of Dietetics and Nutrition by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact mortensona@obu.edu.
Assessment of Nutrition Status of Adults Using the Nutrition Focused Physical Examination

Kaycee Patrick

CoAuthors: Anna Claire Goodroe & Dr. Detri Brech
RESEARCH SNAPSHOT

Research Question: Can the Nutrition Focused Physical Exam (NFPE) be used to successfully identify malnutrition in older adults?

Key Findings: The NFPE successfully identified malnutrition in older adults in agreement with analysis of a 24-hour dietary recall revealing nutrient deficiencies.

Assessment of Nutrition Status of Adults Using the Nutrition Focused Physical Examination

ABSTRACT

Background: Thirteen percent of the United States (U.S.) population is over 65 years of age and up to 50% are malnourished; therefore, seniors were chosen as the subjects for this research study.

Objective: To identify malnutrition in older adults using the Nutrition Focused Physical Examination (NFPE), and to compare the results to the Academy of Nutrition and Dietetics parameters for assessment of nutritional status.

Design: Each senior voluntarily completed a head-to-toe NFPE, 24-hour diet recall, and anthropomorphic measures were also taken. Information was later analyzed and results were given to each participant.

Participants/setting: Seniors from the Senior Center in Arkadelphia, Arkansas volunteered for the study in the summer of 2018.

Main outcome measures: The NFPE was used to identify areas of malnutrition and 24-hour diet recall information was assessed in comparison to the DRI.
Statistical analyses performed: Results were calculated using Nutritionist Pro®, Excel® and SPSS®.

Results: Sixty-four percent had subcutaneous fat loss in the orbital region, 40% in the upper arm region, and 27% and 10% in the thoracic and lumbar region respectively. Sixty-seven percent had muscle loss in the temple region, 37% in the clavicle bone region, 17% in the scapular bone region, and 70% in the dorsal hand. Of the 30 subjects participating in the study, 93% had some form of malnutrition. Nutrient analysis showed significant correlation between age and protein, carbohydrate, saturated fat, monounsaturated fat, polyunsaturated fat, sodium, iron and kcalories consumed. Intake of potassium, and calcium were significantly below the DRI for both genders. Sodium intake was significantly above the DRI for both genders.

Conclusion: The NFPE was successful in identifying malnutrition in a sample of elderly subjects as confirmed by the low nutrient intake levels reported. However, further research is needed to quantitatively assess the validity and reliability of the NFPE.
INTRODUCTION

Malnutrition in elderly

Malnutrition is a general term used to describe a nutritional imbalance.1-4 Both over and under nutrition are categorized as malnutrition.2-3 According to the Academy of Nutrition and Dietetics (AND) malnutrition diagnosis is warranted by detection of two or more of the following characteristics: “insufficient energy; weight loss; loss of subcutaneous fat; loss of muscle mass; localized or generalized fluid accumulation that may sometimes mask weight loss; and diminished functional status.”3,5-7

As of 2016, 15.2% of the US population was 65 years of age or older and this number is predicted to surpass 23.5% by 2035. This demographic shift will leave a larger geriatric than youth population.8 In 2010, 16% of people over 65 years of age and 2% over 85 years of age were classified as malnourished and those numbers have since increased.1 Geriatrics are especially susceptible to malnutrition as they often have risk factors like poor nutrient absorption, decreased caloric intake and excessive nutrient loss. Some personal factors are; age, apathy or depression, disease, limited mobility, sensory loss, clinical treatments or drug therapy, and the inability of those persons to buy, cook, or consume (chew or swallow) food.2,9-10

Consequences for the patient with malnutrition include weakened immune system response, increased risk of pressure ulcers, delayed wound healing, decreased intestinal absorption of nutrients, compromised renal function, muscle wasting, functional loss increasing the risk of falls, increased hospital stay, higher treatment cost, readmission and increase in mortality.1-4 Malnutrition can also cause extra stress on acute healthcare facilities. Failure to diagnose malnutrition can negatively impact the amount of financial aid a healthcare facility receives from insurance and these losses can be significant. Additionally, patients with untreated
malnutrition heal at slower rates and are more likely to be readmitted within 30 days of their discharge.³

Research has found that malnutrition affects 62% of patients in hospitals, and 85% of nursing home residents however only 7.0% of cases are diagnosed by health professionals.¹⁻³,⁵⁻⁶,¹¹⁻¹² Malnutrition remains poorly diagnosed for a variety of reasons. Lack of nutritional assessment and nutritional training, confusion regarding nutritional responsibility, failure to record anthropomorphic measures, or patient intake, and lack of staff involvement with feeding are all possible reasons that malnutrition could go undiagnosed. Over half of the individuals with malnutrition remain unaware of their condition.²⁻⁴

Nutrition Focused Physical Exam

Nutrition screenings help determine malnutrition. Since malnutrition is reversible, early detection leads to faster treatment and prevention plans for those at risk. The line between screening and assessment can often be blurred, but the two serve distinct functions. The purpose of screening is to identify individuals who may be at risk for malnutrition.¹³ Nutrition screenings should be performed at regular intervals, especially for older adults in an acute care setting, as nutrition status is dynamic and can quickly change.¹⁴ Once an individual has been identified as “at risk” a follow-up assessment should be performed. According to AND, assessment entails a diet history, physical measurements, clinical data, nutrition focused physical findings and background information on the patient.¹³,¹⁵

The NFPE is a head-to-toe examination designed to evaluate physical appearance as well as functional status in order to identify signs of malnutrition.⁷,¹⁶ Of the characteristics used to diagnose malnutrition, four of the six are best recognized by physical examination.⁵⁻⁷
The NFPE is capable of recognizing vitamin, mineral, and protein-energy deficiencies that may go unrecognized by other assessment methods. Orbital, upper arm, thoracic and lumbar, temple, clavicle bone, acromion bone, scapular bone, dorsal hand, patellar, anterior thigh, and posterior calf region, are all thoroughly assessed for signs of muscle of fat loss. Additionally, hair, skin, nails and the oral cavity are inspected for manifestations of micronutrient deficiency and levels of edema are judged. Each area of the body is categorized as well nourished, mild to moderately malnourished, or severely malnourished. (Refer to Table 1)

The objective of the research is to identify malnutrition in older adults using the NFPE, and to compare the results to the Academy of Nutrition and Dietetics parameters for assessment of nutritional status. Researchers observations after performing the NFPE were verified by comparing the data to an analysis of each subjects’ 24-hour diet recall.

MATERIALS AND METHODS

Training

Two undergraduate students from Ouachita Baptist University’s (OBU) Nutrition and Dietetics department were granted approval from the Institutional Review Board at OBU. The researchers began by receiving peer-champion training in administering the NFPE from their mentor who had previously completed the NFPE hands-on training workshop sponsored by AND. Several articles were reviewed by the undergraduates including Academy of Nutrition and Dietetics: Scope of Practice for the Registered Dietitian, Academy of Nutrition and Dietetics: Revised 2012 Standards of Practice in Nutrition Care and Standards of Professional Performance for Registered Dietitians, Consensus Statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: Characteristics Recommended

Dietetics/American Society for Parenteral and Enteral Nutrition: Characteristics Recommended
for the Identification and Documentation of Adult Malnutrition (Undernutrition),12
Differentiating Malnutrition Screening and Assessment: A Nutrition Care Process Perspective,13
and Nutrition-focused Physical Examination: Skin, Nails, Hair, Eyes, and Oral Cavity.21 The Academy’s Nutrition Focused Physical Exam Pocket Guide5 as well as Litchford’s Nutrition Focused Physical Assessment: Making Clinical Connections20 book were studied to familiarize the students with signs of malnutrition. Videos from the University of North Florida’s dietetic interns24 and the University of California San Diego Health8 were also used.
Researchers purchased a penlight in order to assess the eyes and mouth. The undergraduates applied their knowledge by performing the NFPE on one another while being critiqued by their trained mentor. Before visiting the site, the researchers created a chart designed to represent the body areas to be examined. The chart designated space to record each body region as well nourished, mild to moderate, or severely malnourished. The body areas listed on the chart were hair, orbital region, mouth, clavicle, shoulders, triceps, scapular, ribs, iliac, hand, quads, calves, edema and skin.

Participants
Participants in this study were attendees of the Arkadelphia, Arkansas Senior Center. Over the course of two mornings, the senior adults at the center were asked if they would consider taking part in the voluntary study. In total, 31 senior adults participated. The ages of participants ranged from 63 to 90 years old.
Procedures

Interaction with the subjects began by the individual signing an informed consent form that stated the nature of the study. After, the data collection began. Data was obtained through three different assessment methods. First, anthropomorphic measures were obtained with an electronic scale and a manual stadiometer. Subject age was asked and gender and race were non-verbally documented. Then a thorough NFPE was performed by carefully evaluating each body area according to the prepared chart. The assessment began at the head with hair and face and continued down the body ending with the feet. While one researcher performed the assessment, the other documented the findings as either well nourished, mild to moderate, or severely malnourished by adding a tally to the corresponding box in the chart. Finally, a 24-hour diet recall was performed individually with each subject. A researcher recorded all food items consumed the previous day as well. Preparation method, time of day consumed, and amount of each item consumed were also noted. Upon exit the participant received a brief handout with nutrition and physical activity tips from the USDA’s dietary guidelines.

Analysis of Data

All data collected was considered confidential. Because of this, researchers deleted subject names and instead assigned numbers to each set of data to differentiate subjects. The researchers began analyzing the data by using height and weight to calculate BMIs and BMI weight status categories for each subject. Once BMIs were calculated, anthropomorphic measurements, age, race and gender were entered into an Excel spreadsheet.

The analysis then proceeded to the diet histories. Researchers entered each subject’s 24-hour recall into Nutritionist Pro®. Each item was entered according to the specific data recorded. Nutritionist Pro calculated a complete list of micro and macronutrients for each
individual. Total kcalories, carbohydrates, protein, fat, cholesterol, saturated fat, monounsaturated fat, polyunsaturated fat, trans fat, sodium, potassium, calcium and iron values were highlighted. This data was entered into the the existing Excel® sheet. The researchers then obtained the official Daily Reference Intake (DRI) values for each of these nutrients. The subject’s individual micro and macronutrient values were tagged green if they exceeded the recommended value and red if they fell below.

The researchers then entered the data into the Statistical Package for the Social Sciences (SPSS) and conducted a bivariate (Pearson) correlation comparing age with nutrients and calories. Descriptive statistics for kcalories, carbohydrates, protein, fat, cholesterol, saturated fat, monounsaturated fat, polyunsaturated fat, trans fat, sodium, potassium, calcium, iron, age and BMI were also completed with SPSS. A one-sample t test comparing nutrient intake with DRI was conducted.

RESULTS

Nutrition Focused Physical Exam

Thirty-one senior adults volunteered for this study. One data set was removed as an outlier. Therefore, the data of 30 subjects was examined. Subject ages ranged from 63 to 90 years old. Seventeen percent (n=5) of the participants were between the ages of 60 and 69, 37% (n=11) were between the ages of 70 and 79 and 47% (n=14) were over 80 years of age. Two races were represented in this sample. Sixty-seven percent (n=20) of subjects were Caucasian and 33% (n=10) were African American. The BMI calculations revealed that no subjects were classified as underweight. According to CDC classifications 33.3% (n=9) of subjects were at a normal weight, 41% (n=11) were overweight and 26% (n=7) were obese.
The physical assessments found that 83% (n=25) subjects showed signs of being well nourished and 17.0% (n=5) were mild to moderately malnourished in the mouth region. Thirty-three percent (n=10) of subjects were well nourished in the temple region, 54% (n=16) were mild to moderately malnourished and 13% (n=4) showed signs of severe malnutrition. Thirty-six percent (n=11) of subjects had well nourished eyes, 57% (n=17) had mild to moderately malnourished eyes and 7.0% (n=2) showed signs of severe malnutrition. In hair, iliac and quad muscle 93% (n=28) of subjects were recorded as well nourished and 7.0% (n=2) were mild to moderately malnourished in each category. Edema and skin both showed 87% (n=26) as well nourished and 13% (n=4) as mild to moderately malnourished. Clavicle assessments found 63% (n=19) as well nourished, 27% (n=8) as mild to moderately malnourished and 10% (n=3) as severely malnourished. Eighty-three percent (n=25) of subjects’ shoulders were recorded as well nourished, 10% (n=3) were found as mild to moderately malnourished and 7.0% (n=2) showed signs of severe malnutrition. Sixty percent (n=18) of subjects were well nourished in the triceps, 33% (n=10) were mild to moderately malnourished, and 7.0% (n=2) were severely malnourished. Hand inspection showed 30% (n=9) of subjects as well nourished, and 70% (n=21) as mild to moderately malnourished. Seventy-three percent (n=22) of subjects were recorded as well nourished in the rib region, and 27% (n=8) were recorded as mild to moderately malnourished. In the calf, 97% (n=29) of subjects were well nourished and 3% (n=1) showed mild to moderate malnutrition.

Diet Recall

Analysis of the 24-hour diet recalls found that 53% (n=16) of the subjects interviewed were not meeting the recommended daily energy intake. Three males exceeded the 2,000kcal DRI. Four females exceeded the 1,600kcal DRI. Nutrient analysis showed a significant correlation between
age and protein intake ($r=.53, p\leq.002$), carbohydrate intake ($r = .44, p\leq.014$), fat intake ($r=.52, p\leq .003$), kcalories consumed ($r=.59, p\leq.001$), saturated fat intake ($r=.39, p\leq .033$),
monounsaturated fat intake ($r=.39, p\leq .029$), polyunsaturated fat intake ($r=.39, p\leq .032$), sodium intake ($r=.51, p\leq .004$), iron intake ($r=.74, p\leq .000$), and body mass index ($r=.59, p\leq .001$).

Forty percent (n=12) of subjects did not meet the recommended daily intake for protein. Eight males met the 60 gram (g) DRI for protein. Ten females met the 46g DRI for protein. Carbohydrate intake was lacking in 33% (n=10) of subjects. Eleven females and eight males exceeded the 130g DRI for carbohydrates.

Female intake of potassium ($p\leq .000$), calcium ($p\leq.000$), and kcalories ($p\leq .000$) was significantly below the DRI level, but sodium intake ($p<.009$) was significantly above the DRI. Levels of potassium and calcium were under the recommended levels in 100% (n=30) and 93% (n=28) of subjects respectively. Male intake of potassium ($p\leq .000$), calcium ($p\leq .000$), iron ($p\leq .020$), and carbohydrates ($p\leq .014$) were significantly below the DRI, but sodium intake ($p\leq .008$) was significantly above the DRI. All subjects fell below the recommended intake for potassium. Only one female and one male met the DRI for calcium. Iron intake was below the recommended level in 47% (n=14) of subjects.

The mean intakes of saturated, monounsaturated (MUFA) and polyunsaturated fat (PUFA) for females were 137g, 12.6g and 8.2g respectively. The mean intakes of saturated, MUFA, and PUFA for males were 21.8g, 16.2g and 17.5g respectively. The mean intake of trans fat was 0.2g for females and 0.1g for males. Nine males and sixteen females exceeded the DRI for total fat. Six females and two males were over the 300mg per day recommendation for cholesterol. (Refer to Table 2)
DISCUSSION

Summary of findings

According to results from the NFPE, 93% of the subjects had some form of malnutrition manifested in one of their assessed body regions. These findings were confirmed by analysis of the 24-hour recall information which revealed several key nutrient deficiencies. Female intake of potassium, calcium, and kcals was significantly below the DRI level. Male intake of potassium, calcium, iron, and carbohydrates was significantly below the DRI. Sodium intake was significantly above the DRI for both genders. The NFPE and dietary recall were in agreement concerning the malnutrition status of many of the subjects.

Researchers concluded that based on these results the NFPE is an acceptable tool to assess malnutrition in the elderly based on the standards specified by AND. When it comes to nutrition screening and assessment, there are many variations and no one tool is used universally. The most widely used screening and assessment tools for adult malnutrition are the Malnutrition Screening Tool, the Malnutrition Universal Screening Tool, the Nutritional Risk Screening, the Short Nutrition Assessment Questionnaire, the Geriatric Nutrition Risk Index, the Minimum Data Set, Seniors in the Community: Risk Evaluation for Eating and Nutrition, the Mini Nutrition Assessment and its Short Form variation, and the Subjective Global Assessment. These screening and assessment tools have all been verified for their validity as well as their reliability through multiple studies. Further research is needed to quantitatively assess the validity and reliability of the NFPE in diagnosing malnutrition.
Strengths and limitations

One strength of this study is its combined use of both physical assessment and diet recall information. Having both sets of data allowed researchers to make confident conclusions based on their findings since patient information is verified by more than one source.

This study was limited as it failed to assess extra variables including recent weight change, illness, and appetite. Future studies should expand on this pilot by including questions pertaining to these issues in order to strengthen conclusions.

CONCLUSION

Considering the elevated risk of malnutrition in the geriatric population, it is crucial that health professionals employ thorough and accurate malnutrition screenings and assessments. Screening and assessment for malnutrition in the elderly must be designed with the knowledge that nutrition status and disease state are closely intertwined, and the natural effects of aging must also be accounted for. While a more recent assessment method, the NFPE is highly relevant in diagnosing malnutrition. Use of the NFPE highlights the importance of dieticians in the multidisciplinary team. For further studies and clinical applications, the NFPE should be used in conjunction with other assessment methods in order to identify the cause of malnutrition so that a specific treatment plan can be developed. This information provided by the NFPE is essential in developing a holistic treatment plan for and ensuring the highest quality care for each patient.
REFERENCES

20. Litchford M. Nutrition focused physical assessment: making clinical connections. Case
Software and Books; 2013.

21. Pogatshnik C, Hamilton C. Nutrition-focused physical examination: skin, nails, hair,

standards of practice in nutrition care and standards of professional performance for

25. Fodero K, Wunderlich S. The use of the Mini Nutrition Assessment tool to measure the
nutrition status of community-dwelling seniors taking part in government-sponsored

26. Casico B, Logomarsino J. Evaluating the effectiveness of five screening tools used to

27. Shabir A. Review article on nutrition screening and assessment tools in the elderly. The

14, 2018.

Table 1. Physical Exam: Parameters Useful in the Assessment of Nutritional Status

<table>
<thead>
<tr>
<th>Exam Areas</th>
<th>Severe Malnutrition</th>
<th>Mild-Moderate</th>
<th>Well-Nourished</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcutaneous Fat Loss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbital region- Surrounding the eye</td>
<td>Hollow look, depressions, dark circles, loose skin</td>
<td>Slightly dark circles, somewhat hollow look</td>
<td>Slightly bulged fat pads. Fluid retention may mask loss</td>
</tr>
<tr>
<td>Upper arm region - Triceps/biceps</td>
<td>Very little space between folds, fingers touch</td>
<td>Some depth pinch, but not ample</td>
<td>Ample fat tissue obvious between folds of skin</td>
</tr>
<tr>
<td>Thoracic and lumbar region- Ribs, lower back, midaxillary line</td>
<td>Depression between the ribs very apparent. Iliac crest very prominent.</td>
<td>Ribs apparent, depressions between them less pronounced. Iliac crest somewhat prominent.</td>
<td>Chest is full, ribs do not show. Slight to no protrusion of the iliac crest</td>
</tr>
<tr>
<td>Muscle Loss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temple Region - Temporalis muscle</td>
<td>Hollow, scooping depression</td>
<td>Slight depression</td>
<td>Can see/feel well-defined muscle</td>
</tr>
<tr>
<td>Clavicle bone region - Pectoralis major, deltoid, trapezius muscles</td>
<td>Protruding, prominent bone</td>
<td>Visible in male, some protrusion in female</td>
<td>Not visible in male, visible but not prominent in female</td>
</tr>
<tr>
<td>Clavicle and acromion bone region - deltoid muscle</td>
<td>Shoulder to arm joint looks square. Bones prominent. Acromion protrusion very prominent.</td>
<td>Acromion process may slightly protrude</td>
<td>Rounded, curves at arm/shoulder/neck</td>
</tr>
<tr>
<td>Scapular bone region - Trapezius, supraspinus, infraspinus muscles</td>
<td>Prominent, visible bones, depression between ribs/scapula or shoulder/spine</td>
<td>Mild depression or bone may show slightly</td>
<td>Bones not prominent, no significant depressions</td>
</tr>
<tr>
<td>Dorsal hand - Interosseous muscle</td>
<td>Depressed area between thumb-forefinger</td>
<td>Slightly depressed</td>
<td>Muscle bulge</td>
</tr>
<tr>
<td>Lower body</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patellar region - Quadriceps muscle</td>
<td>Bones prominent, little sign of muscle around the knee</td>
<td>Knee cap less prominent, more rounded</td>
<td>Muscles protrude, bones not prominent</td>
</tr>
<tr>
<td>Anterior thigh region - Quadriceps muscles</td>
<td>Depression/line on thigh, obviously thin</td>
<td>Mild depression on inner thigh</td>
<td>Well-rounded, well-developed</td>
</tr>
<tr>
<td>Posterior calf region - Gastrocnemius Muscle</td>
<td>Thin, minimal to no muscle definition</td>
<td>Not well-developed</td>
<td>Well-developed bulb of muscle</td>
</tr>
<tr>
<td>Edema</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rule out other causes of edema, patient at dry weight</td>
<td>Deep to very deep pitting lasts a short to moderate time (31-60sec), extremity looks swollen</td>
<td>Mild to moderate pitting, slight swelling of the extremity, indentation subsides quickly</td>
<td>No sign of fluid accumulation</td>
</tr>
</tbody>
</table>
Table 2. Results of One-Sample t-test Comparing Nutrient Intake with Dietary Reference Intake (DRI)

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>DRI Value</th>
<th>Mean (+SD)</th>
<th>t</th>
<th>df</th>
<th>Significance (2-tailed)</th>
<th>Mean Difference</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium (Females)</td>
<td>4700mg</td>
<td>1604.55 +736.17</td>
<td>-18.33</td>
<td>18</td>
<td>0.00</td>
<td>-3095.45</td>
<td>-3450.27, -2740.63</td>
</tr>
<tr>
<td>Potassium (Males)</td>
<td>4700mg</td>
<td>2059.06 +740.51</td>
<td>-11.83</td>
<td>10</td>
<td>0.00</td>
<td>-2640.94</td>
<td>-3138.42, -2143.46</td>
</tr>
<tr>
<td>Calcium (Females)</td>
<td>1200mg</td>
<td>534.52 +319.70</td>
<td>-9.074</td>
<td>18</td>
<td>0.00</td>
<td>-665.48</td>
<td>-819.57, -511.40</td>
</tr>
<tr>
<td>Calcium (Males)</td>
<td>1200mg</td>
<td>593.09 +377.04</td>
<td>-5.34</td>
<td>10</td>
<td>0.00</td>
<td>-606.90</td>
<td>-860.21, -353.61</td>
</tr>
<tr>
<td>Kcalories (Females)</td>
<td>1600</td>
<td>1173.78 +348.32</td>
<td>-5.33</td>
<td>18</td>
<td>0.00</td>
<td>-426.22</td>
<td>-594.10, -258.34</td>
</tr>
<tr>
<td>Kcalories (Males)</td>
<td>2000</td>
<td>1683.67 +703.62</td>
<td>-1.49</td>
<td>10</td>
<td>0.17</td>
<td>-316.33</td>
<td>-789.03, -156.37</td>
</tr>
<tr>
<td>Iron (Females)</td>
<td>8mg</td>
<td>8.77 +4.10</td>
<td>0.818</td>
<td>18</td>
<td>0.42</td>
<td>0.77</td>
<td>-1.21, 2.74</td>
</tr>
<tr>
<td>Iron (Males)</td>
<td>8mg</td>
<td>11.57 +4.28</td>
<td>2.77</td>
<td>10</td>
<td>0.02</td>
<td>3.57</td>
<td>0.70, 6.45</td>
</tr>
<tr>
<td>CHO (Females)</td>
<td>130g</td>
<td>148.64 +49.20</td>
<td>1.65</td>
<td>18</td>
<td>0.12</td>
<td>18.64</td>
<td>-5.07, 42.35</td>
</tr>
<tr>
<td>CHO (Males)</td>
<td>130g</td>
<td>203.93 +83.05</td>
<td>2.95</td>
<td>10</td>
<td>0.01</td>
<td>73.93</td>
<td>18.14, 129.72</td>
</tr>
<tr>
<td>Sodium (Females)</td>
<td>1200mg</td>
<td>2026.51 +1237.70</td>
<td>2.91</td>
<td>18</td>
<td>0.01</td>
<td>826.51</td>
<td>229.96, 1423.06</td>
</tr>
<tr>
<td>Sodium (Males)</td>
<td>1200mg</td>
<td>2534.4 +1339.9</td>
<td>3.30</td>
<td>10</td>
<td>0.01</td>
<td>1334.36</td>
<td>434.19, 2234.53</td>
</tr>
<tr>
<td>Protein (Females)</td>
<td>46g</td>
<td>49.84 +21.98</td>
<td>0.761</td>
<td>18</td>
<td>0.46</td>
<td>3.84</td>
<td>-6.76, 14.43</td>
</tr>
<tr>
<td>Protein (Males)</td>
<td>56g</td>
<td>66.21 +27.54</td>
<td>1.23</td>
<td>10</td>
<td>0.25</td>
<td>10.21</td>
<td>-8.29, 28.71</td>
</tr>
</tbody>
</table>