Date of Award

2010

Document Type

Thesis

Department

Mathematics

First Advisor

Dr. Jeffrey Sykes

Second Advisor

Dr. Steve Hennagin

Third Advisor

Dr. Johnny Wink

Abstract

The 3n + l Conjecture states that when the Collatz function is applied repeatedly to an initial value, the sequence of values generated always converges to 1, regardless of the starting value. This paper strengthens the claim that all such sequences are convergent by showing that certain types of nonconvergent sequences cannot exist. Specifically, no sequence with parity-periodic values can exist This eliminates all possible nontrivially periodic sequences and all divergent sequences with periodic parity. Therefore, if a counterexample to the conjecture exists, It must be a divergent sequence whose values display no parity periodicity.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.