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THE DEVELOPMENT OF THE CALCULUS 

The Greeks made the first step in the inquirJ of the 

infinitely small quantities by an attempt to determine the 

area of curves. The method of exhaustions they used for 

this purpose consisted of making the curve a limiting area, 

to which the circumscribed and inscribed polygons contin­

ually approached by 1ncr~asing the number of their sides. 

The area obtained was considered to be the area of the 

curve. The method of integration is somewhat similar, to 

the extent that it involves finding the limits of sums. 

Zeno of Elea (e. 450 B.C.) was one of the first to work 

with problems that led to the consideration of infinitesimal 

magnitudes, and Leucippus (c.440 B.C.) and Democrites (c. 

400B.C.) taught that magnitudes are composed of indivisible 

elements in infinite numbers. Archimedes' (c. 225 B.C.) 

work was the nearest approach to actual integration among 

the Greeks: his first noteworthy advance was to prove that 

the.area of a parabolic segment is 4/3 of the triangle with 

the same ba.se s.nd vertex, or 2/3 of the circumscribed quadri­

lateral. He also anticipated many modern formulas in his 

treatment of solids bounded by curved surfaces.1 

There are only traces of an approach to the calculus 

in the Middle Ages, and Pappus of Alexandria tc. 390), who 

followed Archimedes' work, contributed the most from the 
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time of Archimedes until the seventeenth century. During 

the first half.of the seventeenth century, methods of limited 

scope began to appear for constructing tangents, determining 

maxima and minima., and finding areas and volumes. Few gen~ 

eral rules were developed, but the essential ideas of the 

derivative and definite integral were beginn~ng to be formu­

lated. Kepler's study of pla.n,e·!:erJ' motion demanded some 

method for finding areas of sectors which he called "sum of 

the radii", a crude kind of integration; he also considered 

solids as composed of infinitely many infinitely small cones 

of thin disks, whose summation became the problem of later 

integration. Roberval considered the area between a curve 

and a straight line as made up of an infinite number of 

infi~itely narrow rectangular strips, the sum of which gave 

him·the required area. Fernat•s work was similar, and his 

methods for obtaining maxima and minima and for drawing 

tangents,to curves had such striking resemblances to those 

of the differential calculus that Lapllaee and:.~grange 
2 pronounced him to be the inventor. Barrow in his LeetJ;o11es 

opt1cae !! geometricae gave a method of tangents in which 

Q approaches P as in our present theory, the result being 

end infinitely smell arc. The triangle PQR was long known 

as "Barrow's Differential Triangle •. •3 p ~ 
. . T~ , 

"!'here are certain focal points in history toward which 

t'tle Ulles of past progress converge, and from which radiate 

the advances of the future. Such was the age of Newton •••• • 4 
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The early seventeenth century mathematicians bent the force 

of their genius in a direction which eventually led to the 

.discovery of the infinitesimal calculus by Newton and Leibniz 

with the help of the new geometry. 

The ancients had considered the area of a recta.ngle as 

produced by the motion of one of its sides ai:bng the other; 

Newton extended this principle to a.ll kinds of mathematical 

quanti ties. All kind.s of figures can be (lescri bed by the 

motion of bodies, but quanti ties generated in·:· this ma.nner 

in a. given time become greater or less, in proportion as the 

velocity with which they are generated is greater or less. 

This is the consideration that led Newton to apply himself 

to finding out the magnitudes of finite quantities by the 

velocities of their generating motions and that gave rise 

to the method of fluxions before he was twenty-four years 

old. 5 "Having met with an example of the method of Fermat, 

il.Newton succeeded in applying it to adfected equations, 

and determining the proportion of the increments of inde­

terminate quant1ties."6 These increments he called moments; 

the velocites with which the quantities increase he called 

motions, velocities of increase, and fluxions; and he 

applied the name flowing quantities to all quantities which 

increase in time. 

Newton's analysis, consisting of the method of series 

and fluxions combined, was so universal as to apply to 

almost all kinds of problems. He not only invented the 

method of fluxions in 1665, in which the motions or veloci-

~a-~ nf flowing quantities increase or decrease, but he 
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also considered the increase or decrease of these motions 

tHemselves, to which he later gave the name of second fluxions 

He extended his newly discovered method to include the func-

tions then in common use, recognized the fact that the inverse 

problem of differention could be used in solving the problem 

of qua.drature, ana developed a wide range of applications. 7 

The quantities considered by Newton as gradually and 

indefinitely increasing, fluents or flowing quantities, he 

represented by the letters v, x, y, and z; quantities known 
I 

l='lnd. determinate he represented by a, b, c, d; and the velo-

cities by which every fluent is increased by its gene•ating 

motion he represented by T, x; y, i. In 1h! Method of 

Fluxions, tra.nslated by J. Colson from Newton's Latin, 

Newton considered two problems concerning a space described 

by local motion, however accelerated or retarded: 1) "The 

length of the space described being continually given; to 

find the velocity of this motion at any time proposed, 

2) The velocity of the motion being continually given1 to 

find the length of the space described at any time proposed."8 

The first problem is equivalent to differentiation; and the 

second to integration, which Newton termed the method ~f 

quadrature, or to. the solution of a differential equation, 

which N~wton called the inverse method of tangents.9 

Newton solved the first problem by the following •ethod: 

"Dispose the equation, by which the given rela• 
tion ts expressed, according to the dimensions · 
of some one of its flowing quantites, suppose 
x, ~nd multiply its terms by any arithmetical 
progression, and then by ~/x; and perform 
this operation separately for every one of 



the flowing quantities. Then make the sum of 
all the products eque.l to nothing and you will 
have the equation required.nlO 

5 

If the relation of the flowing quanti ti_es is x3 -ax2 + axy 

• y3 = 0, first dispose the terms according to the powers 

of x, then y, and then multiply them in the following 

manner: 

x3 - ax2 + axy - y3 

Multiply by: . . 

3.x • 2x • :t • 0 X , 'X 

-y3 + axy - ax2 + x3 

Multiply by: 

• 0 

3fx2- 2axx + a~y -3ty2 + eix 

The sum of the two products is 3xx2 - 2axx + axy - 3yy2 

+ ayx = 0, which gives the relation between the fluxions 

x and y. If the proposed equation contained complex 

fractions or "surd" quanti ties such e.s .1) a2 - x2, Newton 

substituted a letter for them and proceeded as in the 

above example. 

In respect to the.-second problem, which is equivalent 

to integration, Newton divided equations into three different 

casesz 1) Those in which two fluxions of quantities and only 

one of their flowing quantities are involved, 2) those in 

which two flowing quantities are involved together with 

their fluxions, and 3) those in which the fluxions of more 

than two quantities are involved. So that the flowing 

quantities might be more easily distinguished from one 

another, the fluxion that is put in the numerator of the 

fraction which indicates the ratio of the fluxions is 

Oalled·the "relate quantity" and the one in the denominator 

the "correlate." 
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Solution of Case I: The flowing quantity wltbhlts 

conta.ined in the equation is assumed to be the correlate, 

and the ratio of the fluxions is equal to a quantity in 

terms of this correlate. First multiply the value of the 

ratio of the fluxions by the ~orrelate quantity, then 

divide each,of its te~s by the power to which it 1s. 

raised.. What results will be equivalen~ to .the other
2 . X 

flowjng quantity. Let the 'equation be ~ = a - # + ~ + 

~2; then the correlate qyantity is in terms of x. 
x · x' !12xJ Multiply a - 1f + 'l5'1+84+ a2 by x, and the result is 

z2 x3 3121 ax - ~ + ~ + _ . 2. After dividing each term by the 

power of the corresponding~x term and equating to y, the 
x2 x~ lJlx~ · 

result=is y = ax - ~ + I'9'Zti + 2o48a2. . 

Solution of Case II: For this solution, the equation 

must be changed to one involving the ratio).(of the fluxions 

eque.ted to any aggregate of simple terms without any 

'fractions denominated by the flowingtquant1ty. Let the 

equation be fX:i = 1 - Jx + y + x2 + xy. The terms 1 -Jx 

+ x2(which are not affected by the relate quantity y) are 

written in the table as shown, and the rest of the terms, 

y and xy, are written 1n the left column. After doing 

this, multiply the first tern of the correlate quantity 

by the correlate, :x:, giving x, and then divide by th~ 

number of dimensions, 1, giving x. Substituting :x: for y 

in the marginal terms y and xy gives :x: and :x:2 which are 

written to the right of these terms in the table o .The 

next least terms -Jx and x are added, and the process is 

continued in infinttum. When the sum is obtained, theill': 



it is acted upon a.s though it were an equation of Case I 

end y is obtained. 

; 1· - X+ x2 

x2 1 
- ~x4 1 

y X - + Jx3 +)Ux5, etc. 

x2 - xJ + lx4 - tx5 + 
1 x6 X 

2 J 
+ tx4 If 

x5 sum 1 2x + X - etc. 

• X x2 + tx4 + etc. 

1 

Solution of Case·III: If an equation involves three 

of more fluxions of quantities, any relation between any 

two of these quantities may be assumed, and the relation of 

the fluxions can be found accordingly. Let the proposed 
J_ • • equation be 2x - z + yx = o. Assume x = y2 , therefore 

t = 2yy, and substitute into the original equation: 4yy -
• • 2 z + yy = o. Using Case I to solve this equation ~ields 

= z, and by substituting x for y2 and xf for y3, 
1 

2y2 + -y~J 
1 . 

2X + 'X = Z results. 

Besides the solution of these two problems in the 

Method 2f Fluxions, Newton dete·rmines maxima and minima, 

the radius of curvature of curves, and other geometr~cal 

applications of his fluxionary calculus. The method 

employed is strictly infinitesimal. The fundamental 

principles of the fluxionary ealnulus were first given to 

the world in Newton's Philosophiae Naturalis Principia 

(1687), but itsnmt~tion did not appear until 1693 in the 

second volume of Wallis' Algebra. The exposition given in 

the AlSebra was contributed by Newton and rests on infini-

lfo:.~. 
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tes1mals, as .does the first edition of Principia. However, 

in the second· edition the foundation is somewhat altered, 

and in the Quadrature 2f Curves (1704) the infinitely 

small quantity is completely abandoned. Thus, it appears 

that Newton's doctrine was different in different periods.12 

"The method of limits is frequently attributed to 

Newton, but the pure method of limits was never adopted by 

him as his method of constructing the calculus.n13 He 

established in his Principia certain principles which are 

applicable to that method, but used them for a different 

purpose. The first lemma of the first book has been made 

the foundation of the method of limitsz 

"Quantities and the ratios of quantite~,which in 
any finite t1me converge continually to equality, 
and before the end of that time approach nearer 
the one to the other than ay any given difference, 
become ultimately equal."l 

Gottfried Wilhelm Le1bn1~, the second and independent 

inventor of the ce.lculus, during visits to France and England 

in the 1670's on political or diplomatic missions, met the 

leading French and English men of science, and in exchange 

.for some of their ideas disclosed his own.. In this way he 

learned about contemporary advances in algebra and geometry, 

.especially from Henry Oldenl:urg and Huygens. Soon he 

discovered the fundamental principle of the calculus: that 

differentiation,.the means of studying limits and rates, is 

the inverse of integration. In the hands of Leibniz, the 

differential calculus made rapid progress. In the ~ 

Eruditorum, which appeared at Leipsic in October, 1684, he 

published th•~ore important parts of his study of the 
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quadrature of curves. In 1686 a paper containing the 

rudiments of the integral calculus was published in which 

he treated the quantities dx and dy as infinitely small 

and showed that by the use of his notation properties of 

corves co\lld be fully expressed.15 The early distinction 

between the system5 of Newton and Lei bniz lies in the fact 

that Newton used the infinitely small incrE-ment as means of 

determining velocity or fluxions, while Leibniz considered 

the relation of the infinitely small increments as itself 

the object of determination. The difference rests upon a 

difference in the manner or· generating quantities.16 

"Unlike most mathematicians of his day,~.o(Leibniz) 

made an extended study of notation •••• . The notation of the 

calculus as we know it is in large part due to Leibniz. "17 

He proposed to represent the process of intgration by the 

symbol J, the old· form of s, signifying ••summation" and to 

represent the inverse operation by d. By 1675, he had settled 

this notation, writing Jydy = tY2 as it is written today. 

He spoke of the integral ca.lculus as the calculus summatorius, 

and in 1~69 he adopted the term calculus integralis, already 
. ~ 

suggested by Jacques, Bernoulli in 199o.y Newton used dots 

and dashes Bbove the .letters to indicate "fluxions" and · · 

"fluents", but they were difficult to read and to print. 

"It is generally agreed that the development of 
the calculus in England was hindered until well 
into the nineteenth century because English 
mathematicians remained loyal to Newton's nota­
tion while their continental colleagues moved 
ahead intQ new areas with Leibn1z' . . more expressive 
system."l~ 
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Le1bn1z and Newton became embroiled 1n a bitter struggle 

over whtch of them had first devised the calculus. Newton 

firmly believed that Leibniz had derived the differential 

calculus from papers actually communicated to him or from 

h1s 1dea.s which were 1n circulation at the time of lie1bn1z 's 

v1s1t to London 1n 1673. Dispute between the friends of 

both Newton a.nd Let bniz led to a report by a special comm1 t­

tee of the Royal Society which influenced English readers 

of the eighteenth century to g1ve -Le1bn1z little credit. 

It 1s now fairly certain that each discovered the calculus 

independently. Newton wrote on>·h1s method of fluxions as 

early es 1665 but d1d not publish on the subject unt11 1687, 

three years after Leibniz had published in the journal --~ 

Erudi torium a. brief essay which proceeded on different lines 

from Newton's work and used original symbolism.19 Netther 

Leibniz nor Newton, however, was able to establish a rigorous 
' basis for the calculus, but both overcame the obstacle set 

up by the ancient mathema_tic1ans: the belief that scientific 

treRtment of variability wa.s 1mpossi ble because of the 
. 20 

unchanging nature of true reality. 

The general trend from 1700 to 1900 was towerd a 

stricter arithmetization of three basic concepts of the 

calculus: number, function, 11m1t. In the first and crudest 

stage of thi's period, Thomas Simpson (1737-1776, Eng.) 

attempted to clarify, 1n his Treatise 2n ·fluxions, Newton's 

intuitive approach to fluxions through the generation of 

~magnitudes" by "continued motion," but only succeeded 1n 

adding deeper obscurity. Continental mathemat'1o1ans at 





"It is generally agreed that reasonably sound 
but not necessarily final ideas of limits, con;,.. 
tinuity, differentiation and integration came only 
in the nineteenth and twentieth centuries, begin­
ning with Cauchy in 18211. .... 3. n23 

12 

The definition of limit and continuity current today in texts 

on elementary calculus are ba-Sically those of Cauchy used in 

his lectures e.nd writings. .He defined the differential 

quotient. or derivative, as the limit of a difference quotient. 

the definite integrAl as the limit of the sum, and differen­

tials as arbitrary real number~ The continuity of a function 

end the convergence and divergence of an infinite seri.es are 

referred to the concept of a limit. G. F. B. Riemann (1826-

1866, Germa.n) in 1854 investigated the representation of a 
'-

function by a trigonometric (Fourier) series. He discovered 

that Cauchy had been too restrictive in his definition of 

an integral: he showed that definite integrals of sums exist 
/J.. 

even when the integrand in d1scontinu~s. Like Cauchy and 

Riemann, other mathematicians since the time of Newton and 

Leibniz have improved and added to the calculus; in this 

way the calculus continues tn 1ts·development. 
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