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THE DEVELOPMENT OF THE CALCULUS

The Greeks made the first step in the inguiry of the
infinitely small quantities by an attempt to determine the
area of curves. The method of exhaustions they used for
this purpose consisted of meking the curve a limiting area,
to which the circumscribed and inscribed polygons contin-
ually approached by increasing the number of their sides.
The area obtained was considered to be the area of the
curve. The method of integration is somewhatvsimilar, to
the extent that it involves findlng the limité of sums.
Zeno of Elea (¢. 450 B.C,) was one of the first to work
with problems that led to the consideration of‘infinltesimal
megnitudes, and Leuéippus (c.440 B.C.) and Democrites (c.
4LOOB.C.) taught that magnitudes are composed of indivisible
elements in infinite numbers. Archimedes' (c. 225 B.C.)
work was the nearest approach to actual integration among
the Greeks: his first noteworthy advanée was to prove that
the ares of a parabolic segment is 4/3 of the triangle with
the same bsse and vertex, or 2/3 of the cilrcumscribed quadri-
lateral, He also anticipated many modern formulas in his
treatment of =sollids bounded by curved surfaces.l

There are only traces of an approach to the calculus
in the Middle Ages, and Pappus of Alexandria {e¢. 390), who
followed Archimedes® work, contributed the most from the



time of Archimedes until the seventeenth century. During
the first half of the seventeenth century, methods of limited
scope begen to appear for constructing‘tangents, determining
maxima and minima, and finding areas and volumes, Few gen-
eral rules were developed, but the essential ideas of the
derivative snd definite 1htegra1 were beginning to be formu-
lated. Kepler's study of planetary motion demandéd some
method for finding areas of sectors which he called "sum of
the radii", =a crude kind of 1ntegrétion; he also considered
solidslas composed of infinitely meny infinitely small cones
of thin disks, whose summation became the problem of later
1nt§gration. ‘Roberval congidered the area between a curve
and a straight line as made up of an infinite ﬁumber of
infinitely narrow rectangular strips, the sum of which gave
 him the required area, Fernat's work was similar, and his
methods for obtaining maxima and minima and for dréwing
tangents to curves had suéﬁ striking resemblances to those
- of the differential calculus that Laplace and. Lagrange
pronouhced.him to be the 1nventor.2 Barrow in his Lectivnes
ogticae et geometricae gave a method of tangents in which
Q@ approaches P és in our present theory, the result being
and infinitely small arc, The trisngle PQR was long known
a8 "Barrow's Differential Triangké.”34P
T
77

"There are certain focal points in history toward which

the 1limes of past progress converge, and from which radiate

‘the adtvances of the future. Such was the age of I\Ievﬂ;on....."l'P



The early seventeenth century mathematicians bent the force
of thelr genius in a2 direction which eventually led to the
discovery of the infinitesimal calculus by Newton and Leibnigz
with the help of the new geometry.

The encients had considered the area of a rectangle as
produced by the motion of one of its sides albng the other;
Newton extended this principle to 21l kinds of mathematlical
gquantities. All klnds'of figures can be described by the
mbtion of bodles, but gquantities generated inithis menner
in 2 glven time become greater or less, in proportion as the
velocity with which they are generated is greater or less,
This is the consideration that led Newton to apply himself
to finding out the magnitudes of finite quantities by the
velocities of their generating motlons and that gave rise
to the method of fluxions before he was twenty-four years

old.5

"Having met with an example of the method of Fermat,
is.Newton succeeded in applying it to adfected equations,
land déterminlng the proportion of the 1ncrements of inde-
terminate quantlties.”6 These increments he called moments;
the velocites with which the quaentities increase he éalled
motions, velocities of increase, and fluxions; and he
apprlied the name flowing gquantities to all quantities ®hich
increase in time.

Newton's analysis, consisting of the method of series
and fluxions combined, was so universal as to apply to
almost all kinds of problems. He not only invented the
method of fluxions in 1665, in which the motions or veloci-

+1~a of flowing quantities increase or decrease, but he



also cogsidered the increase or decrease of these motions
themselves, to which he later gave the name of second fluxlons
He extended his newly discovered method to include the fune-
tions then in common use, recognized the fact that the inverse
problem of differention could be used in solving the problem
of gquadrature, and developed a wlde range of applications.7

The guantities considered by Newton as graduélly and
indefinitely increasing, fluents or flowing quentities, he
represented by the letters v, x, y, and i; quantities.known
and detérminate he represented by a, b, ¢, d; and the velo-
cities by‘which every flﬁent 1s increased by its géneaating
motion he represented by ¥, %X, ¥, #. In The Method of
Fluxions, trénslated by J. Colson from Newton's‘Latin,
Newton consldered two problems concerning a space described
by local motion, however accelerated or retarded: 1) "The
length of ﬁhe space described being continually given; to
find the veloclity of this motion at any time proposed,
2) The velocity of the motion being continually givens to
find the length of the space described at any time proposed.“8
The first problem is equivalent to differentiation; and the
second to integration, which Newton termed the method of
quadrature, or to the solution of a differentisl equation,
which‘Néwton called the inverse method of tangents.9

Newton solved the first problem by the following method:

"Dispose the equation, by which the givén relas

tion 1s expressed, according to the dimensions

of some one of 1its flowing quantites, suppose

X, snd multiply its terms by any arithmetical

progression, and then by %/x; and perform
i this operation separately for every one of



the flowing qQuantities. Then make the sum of
all the products equal to nothing and you will
have the equation required.,"

If the relation of the flowing quantities 18 xJ -ax2 + axy

2 y3 = 0, flrst dispose the terms according to the powers

of x, then y, and then multiply them in the following

manner
'13-a12+axy-y3 ! ;y3+axy-ax2+x3‘
. Mul?iply by Mulﬁiply by s
Z.x.2.0 3% .%.06
Ix?. 2axx + aty | ~3972 + ayx

The sum of the two products is 3%x° - 2a%x + ay - 3§72

+ ayx = 0, which gives the relation between the fluzions

% and &; If the proposed equation contained complex
fractions or "surd" quantitlies such ss ’daz - xz, Newton
substituted a letter for them and proceeded as in the

abovq example,

| In respect to the. second problem, which is equivalent
to integration, Newton divided equations into three different
cases: 1) Those in which two fluxions of quantities and only
one of their flowing quantities afe involved, 2) those in
which two flowing quantities are involved togefher with
thetr fluxions, and 3) those in which the fluxions of more
than two quantities are involved. So that the fiowing
quantities might be more easiiy distinguisheé from one
enother, the fluxion that is put in the numerator of the
fraction which indicates the ratlo of the fluxions is

¢alled the "relate quantity" and the one in fhe denominator

the "correlate."



Solution of Case I: The flowing quantity which'iks
contained in the equation is assumed to»be the correlate,
and the ratio of the‘fluxibns ié}equal to a guantity in
terms of this correlate. First multiply the velue of the
ratio of the fluxibns*by the correlate quantity, then
divide each of its terms by the power to which it is
reised,. What results will be équivalen§ to the other2
flow%ng quantity. Let the ‘equation be ge =a - %: + Eﬁz +
%%%éz; then the corEelate qganfity is in terms of x.
Multiply a ..3% + B%aa-t- '}5%:2%2 by X and the result is
ax - %2 + Bha + %%%%2. After dividing each term by the
'power of the correspghdipgax te§§lzﬁd gquating td y, the
result:is y = ax - 8 + I92a + 2088a<, o

Solution of Case II: For this solution, the equation
must be changed to one 1nvolvingithe ration’ of the flukions‘
equated to anyvaggregate of éimplq terms without any
‘fractions dénominated by the flowing:iquantity. Let the
equation be ﬁﬁi =] - 3x +y + X2 + xy.l The terms 1 -3x
+ xz(ﬁhidh are not affected by the relate quantity y) are
~written in the table as shown, énd the rest 6f the ternms,
"y and xy,’are‘written 1n‘the left colﬁmn. After doing
this,)multiply the first tern of the correlate quantity
by the correlate, x,;giving x, and then divide by the
nunmber bf dimensions, 1, giving x. Subétltuting‘x for y
in the marginal terms y and xy gives x and x2 which are
written to the right of these terms in the tabléa The

next least terms -3x% and X are added, and the proéess is

continued in infinitum. When the sum is obtained, thena-



it is acted'upon as though 1t were an equation of Case I

end y 1s obtalned,

il = 3x + x2
y X - x° + 3x3 Ek *é%x5, etc,
Xy x2 - x3 + 3x %15 + %ﬁks

sum 1 ~ 2% + x2 - 3x3 + %x -BUXS.etc.

Y % X - x° 4 %33 - Bx + 3Ux5 -ﬂSx ete,

Solution of CaseiIII: If an equatlion involves three
of more fluxions of quantities, any relation between any
two ofvthgse guantities may be assumed, and the relation of
the fluxions can be found accordingly. Let the propoéed
equation be 2% - 2 + §x = 0, Assume x = y2, therefore
% = 2y¥, and substitute into the original equation: uyi -
z + §y2 = 0., Using Case I to solve this equation yields
2y2 + %g? = z, and by substituting x for'y2 and X% for yJ,
2x + %x':= z results.

Beslides the sqlution of these two problems in the
Method of Fluxions, Newton determines maxima and minima,
the radius of curvature of curves, and other geometrical
applications of his fluxlonary calcuius. The method
employed 1s strictly infinitesimal. The fundamental
principles of the fluxionary caluulus were first given to
" the world in Newton's Philosophise Naturalis Princ;pia
(1687), but 1tsn@tution did not apvear until 1693 in the
second volume of Wallis® Algebra. The ekposition given in

the Algebra was contributed by Newton and rests on infini-



tesimals, as does the first edition of Principia. However,
in the second edition the foundation is somewhat altered,

end in the Quadrature of Curves (1704) the infinitely

small quantity is completely abandoned. Thus, it appears
that Newton's doctrine was different in different'periods.l2

"The method of 1limits is frequently attributed to
Newton, but the pure method of limits was never adopted by
him as his method of constructing the calculus."13 bHe
established in his Principia certain principles which are
applicable to that method, but used them for a different
purpose. The first lemma of the first book has been made
the foundation of the method of limits:

"Quantities and the ratios of guantites,which in

any finlte time converge continually to equality,

end before the end of that time approach nearer

- the one to the other than By any given difference,
become ultimately equal,."l

Gottfried Wilhelm Leibniz, the>secoﬁd and independent
inventor of the calculus, during visits to_France and England
in the 1670's on political or diplomatic missions, met the
leading French and English men of science, and in exchange
for some of thelr ldeas disclosed his own.. In this way he
learned about contemporary advances in algebra and geometfy,
_especially from Henfy Oldenturg and Huygens. Soon he
discovered the fundamental principle of the calcﬁlus: that
differentiation, .the means of studying limits and rates, is
the inverse of integration. In the hands of Leibniz, the
differéntial calculus made rapld progress. In the Acta
Eruditorum, which appeared at Leipsic in October, 1684, he
published the more important parts of his study of the



quadrature of curves. In 1686 a paper containing the
rudiments of the integral calculus was published in which
he treated the quantities dx and dy as infinitely small
and showed that by the use of his notation properties of
corves could be fully expressed. 15 The early distinction
between the systemgof Newton and Leibniz llies in the fact
that NéWton used thé infinitely small 1ncremeht as means of
determining velocity of flukions, while Leibniz considered
the relation of the infinitely small increments as itself
the object of determinatibn. The difference rests updn a
difference in the manner of‘generating quantitles.16
"Unlike most mathematicians of his day,...(Leibniz)

made an extended study of notation.... The notafion of the
calculus as we know it 1is in large part due to Lelbniz;"17
He proposed to represent the process of 1ntgration by the
symbol_r the 0ld form of s, signifying “summation"™ and to
represent the inverse operation by d. By 1675, he had settled
this notation, wrlt;ng,f&dy = %yz as it is written today.
He.spoke of the integral cslculus as the calculus Summatorius,
and in 1é69 he adopted the term calculus integralis, already
suggested by Jacques Bernoulli'in 1690.? Newton used dots
and dashes sbove the letters to indicate "fluxions” and e
"fluents" but they were difficult to read and to print.

"It is generally agreed that the developmeht of

the calculus in England was hindered until well

into the nineteenth century because English

mathematicians remained loyal to Newton's nota-

tion while thelr continental colleagues moved

ahead 1nt8 new areas with Leibniz' more expressive
system, "1
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Lelbniz and Newton became embroiled in a bitter struggle
‘over which of them had first devised the calculus. Newton
firmly believed that Leibniz had derived the differential
~calculus from papers actually communicated to him or from
his ideas which were in circulation at the time of Léibniz's
visit to London in 1673. Dispute between the friends of
both Newton and Leibniz led to a report by a Special‘commit—
tee of the Royal Society which influenced English readers
of thefeighteenth century‘to give-Leibniz_little‘credit.

It is now fairly certain that each.discovered the.célculus
1ndepéndently. Newton wrote on~his method of fluxions as
early =s 1665 but did not publish on the subject until 1687,
three years after Leibniz had published in the journal -Acta
Eruditorium a bdbrief éssay which proéeeded on different lines
from Newton's work and used oriéinal symbolism.19 Neither
Leibniz nor Newton, however, was able to eétablish a rigorous
basis for thé calculus, but both overcame the obstacle set
up by the ancient mathematicians$ the belief that sciehtific
‘treatment of variability was impossible because of the
unchanging nature of true reallty.ZO

The general trend from 1700 to 1960 was towsrd a
stricter arithmetization of three basic concepts of the
calculus: number, function, limit. In the first and crudest
stage of this period, Thomas Siﬁpson (1737-1776, Eng.)
attempted to clarify, in his Treatise on fluxions, Newton's
1ntu1t1ve approach to fluxions through the generation of
*magnitudes" by “c&ntinued motion,"™ but only succeeded in

adding deeper obscurity. Continental mathematiclians at
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the seme time, followed the tradition of Leibniz as handed
down by John Bernoulli in 1691-2 to 1'Hospital. They pro-
ceeded from the mystical doctrine that "a quantity which is
incressed or decreased by an infinitely small quantity is
neither increased nor decreased," and this became the age
of the"little zero." |

During the period from 1730 to 1820, L. Euier, Jo Lagrange
‘and P, S. Laplace developed higher analysis and severed it
completely from geometry. Euler brought about an emancipa-
tion of the analytical calculus from geometry and established
it 25 an independent science. He developed the calculus of

finite differences in the first of his Institutuiones calculil

differentialis (1775) a2nd then deduced the differential

cslculus from it. His research on series led to the creation
of the theory of definite 1ntegrals‘by the development of the
so-called "Eulerisn integrals." There are few great ideas
pursued by sﬁcceeding analysts which were not suggested by
Buler. At the age of nineteen J. lLagrange communicated to
Euler a general method of dealing with "isoperimetrical
problems", known as the calculus of variations. Lagrange

d1id quite as much a Euler towards the creation of the calculus
of variations, but instead of assuming the limits of the
integral as fixed, he allowed ail co-ordinates of the curve
to vary at the same time. In 1766 the name "“calculus of
variations" was introduced by Euler, and he d4id much to
improve this sciencevalong the lines marked out by Lagrankge.
Laplacé applied the calculus of Newton and Leibniz, with

mechanics, to the elaboration of Newton's theory of gravity.22
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"It is generally agreed that feasonably sound

but not necessarily final ideas of limits, con~ ..

tinuity, differentiation and integration came only

in the nineteenth and twentieth centuries, begin-

ning with Cauchy in 1821-3,%23
The definition of 1imit and continuity current today in texts
on elementary calculus are basically those of Cauchy used in
his lectures and writings. He defined the differential
quotient, or derivative, as the 1limit of a difference quotient,
the definite integrsl as the limit of the sum, and differen-
tials as arbitrary resl number§ The continuity of a function
and the converéence and divergence of an infinite series are
referred to the concept of a 1imit. G. F., B, Biemann (1826-
1866, German) in 1854 1nvestigated the representation of a
fﬁnctioﬁ by é trigonometric (Fourier) series. He discovered
that Cauchy had been too restrictive in his definition of
an integral: he showed that definite integrals of sums exist
even when the integrand in discontlnué?. Like Cauchy and
Riemann, other mathematiclans since the time of Newton and

Leibniz have improved and added to the calculus; in this

way the calculus continues in its developments
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