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ABSTRACT: 

Currently, advances in the area of photodynamic therapy (PDT) using porphyrin 

molecules are being made and not only in this arena, but in science and society overall, 

nanoparticles are of high interest. For perspective on the size of nanoscale products (such 

as porphyrins or quantum dots) present in society today, consider that 2 g of 100 run­

diameter nanoparticles contains enough material to provide every human worldwide with 

300,000 particles each (Hardman 2006). Porphyrins are better suited for PDT than their 

organic dye predecessors due to their fluorescence intensity and longevity. Currently, 

Photofrin® and Visudyne®, both porphyrin-type derivatives are used in PDT. However, 

the fluorescence and longevity advantages could possibly be further improved by the 

successful coupling of the porphyrin molecule to nanoparticles known as quantum dots 

(QDs). QDs, types of phosphors, are miniscule crystals of semiconductor material such as 

zinc sulfide, cadmium sulfide, cadmium telluride, or cadmium selenide, with their overall 

structure being composed of a core surrounded by an outer shell. The nature of QDs may 

be altered upon modification of or additions to this outer shell - including the attachment 

of porphyrin molecules (Zenkevich 2006). The resulting QD-porphYJin complex is 

expected to have increased photo-efficiency and more selective biological cell imaging. 

Porphyrins are known to be tumor specific and therefore the QD-porphyrin complex 

should be as well. 

Continuing research may include the addition of zinc to the porphyrin complex 

followed by attempted coupling with QDs. A second area of further research will include 

the addition ofhexadiamine through the aide of a BOC protecting group followed by 
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attempted coupling with QDs, as well as investigations concerning the cellular uptake of 

many of these QD-porphyrin compounds. 
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INTRODUCTION: 

Protocols and methods for compounds to be used in cellular imaging and 

photodynamic therapy are areas of medicine in which advances are continually being 

made. Not simply in these procedures, but in any facet of medical use, compounds that 

are developed in a laboratory setting must be correctly characterized along with 

determining that they are soluble in water. If a compound is water-soluble, then the newly 

developed compound can be further analyzed for use in vivo - for example, the human 

body. 

In most cases concerning abnormal cell growth, the most effective route for 

obtaining a correct diagnosis as well as issuing an accurate prognosis, is for physicians to 

consult images of the abnormal cell growth occurring within a patient' s body. Currently, 

successful cellular images are being obtained through the use of organic dyes. The 

drawback to utilizing organic dyes is that they only provide an adequate amount of 

fluorescence for a very limited amount of time while in the body. One option that is being 

researched and developed to improve the quality output of cellular imaging and to 

improve longevity of fluorescence is the possibility to make use of quantum dots (QDs). 

Quantum dots are nanoparticles (2-1 0 nm) whose structure is comprised of a core of 

semi-conductor material such as Zn or CdSe, surrounded by an outer shell (Shiohara 

2004, Medintz 2005). At a size of 10 nrn, 3 million QDs would be able to fit within the 

width of the average human thumb! QDs are capable of a highly effective level of 

fluorescence which can be modified and tuned by making alterations to their outer shells 

(Sui 2005). The goal of this project was to perform a successful alteration to the outer 

shells of QDs by the addition of large molecules known as porphyrins. 
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The structure of a porphyrin is based on the heterocyclic combination of four 

pyrrole rings. This base compound can then be modified through variations of 

substituents on its outer regions and/or the addition of a (typically) metal ion at its center. 

Familiar porphyrin structures include chlorophyll a in plants which contains a magnesium 

atom at its center and the heme molecule within the body that holds iron in its interior 

(Figure 1 ) . Porphyrins are ideal for medical use since their outer substituents may be 

modified to ensure solubility in water, as is the case for porphyrin-based products 

currently being used in photodynamic therapy and cellular imaging. Many forms of 

porphyrins are also tumor specific, which makes them ideal for tumor marking and 

cellular imaging in cancer research and treatment (Ferrari 2005). 

Figure 1: Familiar Porphyrins 

H:C=HC. 

Heme 

C·H• I . . 

Chlorophyll A 

The goal of this project is to be able to successfully couple porphyrin structures 

onto the outer shells of QDs. This surface modification will serve two purposes. First, the 
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highly insoluble QDs will be covered with a water-soluble porphyrin ·envelope' that can 

provide a way for the QDs to be transported safely into a biological environment, as well 

as resulting in a compound that exhibits excellent fluorescence and tumor specificity 

which would be unmatched by the QD and porphyrin components on their own (Hoshino 

2004). 
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BACKGROUND INFORMATION: 

Humans have always been intrigued by the complex world contained within our 

own bodies- this curiosity is continually being fueled and answered through modem 

medical techniques that provide cellular imaging of the inner regions of the human body. 

These advances not only provide a clearer picture of how the body works as we ll as 

supporting educational endeavors, but it also provides doctors and scientists with the 

means to visualize internal inconsistencies that may occur within a patient' s body. To 

obtain internal cellular images, a variety of compounds and methods such as organic 

dyes, ultrasounds, and MRis, have been previously used and are currently being 

improved upon in order to make the process o f procuring such images easier, fas ter, and 

safer. 

One such method that is currently being used in medicine is photodynamic 

therapy (PDT) which makes use o f porphyrin-based compounds in labeling tumors so 

that they can be more accurately located and destroyed (Salata 2004) . The porphyrin-

based photosensitizer is injected into the patient and allowed to concentrate in abnormal 

cells over time. Those labeled cell s can then be exposed to a certain wavelength of light 

to acti vate the photosensitizer and in tum, destroy the tumor (Figure 2). 

Figure 2: Photodynamic Therapy 
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Two photosensitizers that are currently on the market are Photofrin® and Visudyne®. 

Both of these products exhibit levels of fluorescence characteristic of porphyrins and aid 

physicians in targeting abnormal cells associated with lung and esophageal cancers and in 

treating we macular degeneration, respectively. Photofrin® is injected into the patient and 

remains inactive until exposed to a laser beam of particular wavelength. Before becoming 

activated by the laser, the compound is allowed time to concentrate in the tissues - it is 

particularly fond of high-grade dysplasia and cancer cells which are destroyed when 

Photofrin® is activated (Axcan Pharma Inc.). Visudyne® can also be injected into a 

patient via the bloodstream which transports the compound to the blood vessels (involved 

in sight) affected by wet macular degeneration that are located on the backside of the eye 

that affect the person's ability to see. Then a laser is shone into the affected area, 

Visudyne® is activated, and the vessels are sealed shut (Novartis). Both of these PDT 

treatments are relatively harmless and are sufficiently capable of relieving the patient of 

symptoms associated with their respective disease. Although porphyrins, as well as 

traditional organic dyes, provide a way of targeting and destroying abnormal cells within 

the body, their efficiency and longevity are only moderately impressive. As noticed with 

these two products, PDT is effective in areas of the body that can be easily exposed to 

light activation directly or by way of a scope. More defined cellular imaging and tumor 

labeling may be achieved through further modification of the porphyrin-based 

complexes, or by the use of a different compound entirely. 

One such compound that is ofhigh interest to scientists and physicians alike is the 

quantum dot (QD). A quantum dot is a nano-sized particle consisting of a core made of 

semiconductor material such as Cd/Se and an outer shell. QDs exhibit excellent 
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fluorescence capabilities, making them potential candidates for intracellular imaging and 

tumor marking- however, these dot structures are not water soluble, making them less 

than ideal for treatments and procedures that occur within the body (Palaniappan 2005). 

By comparing the two, QDs prove to be much more e fficient in maintaining flu orescence 

than their organic dye predecessors (Sungjee 2003). 

Figure 3: Longevity of Fluorescence Comparison 
Top Row - Organic Dye 

Bottom Row - Quantum Dots 
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Physics World, 2003 

As seen in this comparison of illuminated frog embryos, the QDs (row b) display a highl y 

effecti ve level of fluorescence over time as compared to the organic dye (row a) which 

gradually diss ipates (Figure 3). 

Fluorescence- Fluorescence occurs when exposure to a particular wavelength of 

light excites a compound 's electrons. As an excited electron jumps to a higher energy 

level known as the excited state, the compound is said to exhibit absorbance of the light. 

The electron then emits visible color known as fluorescence as it fall s back to its original 

ground state (Figure 4). This cycle of absorption and flu orescence happens only while the 

compound is exposed to the particular exc itation wavelength and stimulation is induced. 
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Figure 4: Fluorescence 
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Phosphorescence, on the other hand, is when the excitation of a compound's electrons is 

essentially stored over time and its illumination occurs whether or not the original 

stimulation is continued. The principle of phosphorescence is seen in glow-in-the-dark 

objects which show continual illumination that is more particularly visible to the naked 

eye in the absence of light. Fluorescence is a phenomenon which is seen in both 

porphyrin structures and QDs, both of which encompass the possibility of enduring 

modifications that may allow for the fine-tuning of the fluorescence of either compound. 

The fluorescence of many compounds can be detected , measured and verified 

using an instrument known as a fluorescence spectrophotometer (Figure 5). A cuvette 

containing a solution of the compound of interest is placed in the instrument, which can 

be specifically programmed to expose the solution to a specified excitation wavelength. 

The instrument can then read the level of fluorescence of the solution and provides a 

printout with a corresponding peak displayed at the level of fluorescence. 
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Figure 5: Fluorescence Spectrophotomer 
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Quantum dots may exhibit varying colors of flu orescence depending on their size 

and composition (Figure 6). As the size of a QD is increased, its exhibited fluorescence 

changes from blue to red in color. The QDs used in this particular project were classified 

as 620 nm - the wavelength at which the dots would be expected to display optimal 

fluorescence for their size. As seen in Table 1, 620 nm is located at the division between 

orange and red fluorescence and upon excitation the vial of QDs did in fact exhibit an 

almost neon-orange glow. Conversely, smaller dots (and therefore those at higher energy) 

show colors in the blue-green family. 

Table 1: Wavelengths & Colors 

Color Wavelength (nm) 

violet 380-450 

blue 450-495 

green 495-570 

~dlow 570-590 

orange 590-620 

red 62Q-750 

Figure 6: QD Fluorescence 
Image Courtesy of Prof Weller 
htto: l/www. chemie. unihamburq. de/od weller/ 



As previously mentioned, despite the excellent efficiency of QDs for cellular imaging 

(Figure 7), the QD nanoparticles are not water soluble and are therefore less than ideal for 

use within a biological system such as the human body. Current use of QDs within the 

body is closely regulated with use of the nanoparticles being limited to areas of the body 

where they can be removed or expelled quickly, avoiding potential harm to the patient . 

Figure 7: Intestinal Images Using QDs 

Images Courtesy of The National Center for Microscopy and Imaging Research 

Recent research concerning QDs has typically been focused on their structure- most 

specifically, modifications and alterations to the outer shell including the addition of 

biomolecules as seen in Figure 8. 

Figure 8: QD Modification 
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Through such alterations of the outer shell, the solubility and reactivity of QDs may be 

changed and more specifically tuned for medicinal use (Sui 2005). Change in the 

composition of the QD's outer shell is the main focus of the majori ty of research projects, 
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papers, and articles within modern scientific magazines and meetings, as well as this 

thesis. 
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METHODS: 

Synthesis of the Porphyrin, H2TPPC- To begin, a porphyrin structure was 

synthesized and thoroughly purified. Pyrrole, 1.5 mL, was combined with 3.0 g of 4-

carboxybenzaldehyde (also known as 4-formylbenzoic acid) in approximately 250 mL of 

propionic acid in a round bottom flask, and refluxed for 3 hours (Reaction 1 ). The flask 

was then removed, allowed to cool to room temperature, and placed in a freezer 

overnight. Observed color changes happened as the mixture refluxed with changes 

ranging from a white, cloudy appearance to a dark red, finishing with a seemingly black 

color. Upon removal from the freezer, the solid product was filtered and washed with 

dichloromethane on a course frit and allowed to stand and thoroughly dry. Next, the dried 

product was weighed and dissolved into solution with methanol. Purification of this 

solution continued through the use of a rotovap machine to evaporate the methanol under 

reduced pressure, followed by column chromatography. The purified product from the 

rotovap was dissolved back into solution using methanol and run through a pressurized 

column containing Sephadex LH-20. Each varying fraction that was expelled from the 

column was collected in 50 mL flasks with the light colored fractions from the very 

beginning and very end of the purification being discarded as well as a few dark green 

solutions from the beginning of the column. The fractions that appeared pink in color 

were retained from the column and were obtained as the final porphyrin product 

following one final rotovap purification. 
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Reaction I : Synthesis ofH2TPPC 

HOOC COOH 

Q prop1oruc acid 

COOH 

4~boxybe~dchyde 

HOOC COOH 

Synthesis of H2 TPPEA began by combining H2 TPPC, 0.25 g, 0.313 g of 1-

Hydroxy-benzotriazole hydrate (HOBT), 0.205 g of of 1,3-dicyclohexylcarbodiimide 

(DCC), and 0.160 g diethanolamine in approximately 50 mL oftetrahydrofuran (THF) 

and stirred for 1 hour in a round bottom flask. Then the reaction was modified by the 

addition of2 mL of water, THF was decanted off, and then the flask was allowed to sit 

overnight to facilitate complete evaporation of the THF that remained. The resulting 

product was then dissolved in 50/50 methanol/H20 and purified by column 

chromatography using Sephadex LH-20. The red portion ofthe solution that eluted from 

the column was then collected and rotovapped. This purification was repeated using 

Sephadex LH-20 utilizing H20 as the eluent. The pink porphyrin fraction was collected 

and evaporated under reduced pressure to yield the purified H2TPPEA (Reaction 2). 

Sephadex LH-20 is a chromatography material that separates a solution based on its 

lipophilicity, while Sephadex G-50 focuses on separation as a direct result of size. By 

performing preliminary reactions, the need for the inclusion of water to the synthesis of 

H2 TPPEA was found to be unnecessary. In the end, coupling with QDs occurred using 

not H2 TPPEA, but H2 TPPC. 



Reaction 2: Synthesis ofH2TPPEA 

HOOC 

Synthesis of Quantum Dots - Although no QDs were directly synthesized for this 

project, the synthesis of most variations of QDs happens by way of a two-step process. 

Prolysis of organometallic precursors (such as dimethyl cadmium and trioctylphosphine 

selenide) was conducted in trioctylphosphine oxide (TOPO). The precursors were 

injected into a flask at temperatures within the range of 340 to 360 oc followed by the 

addition ofTOP, which generated small dots grown between 290 and 300 °C that were 

later collected as powders using size-selective precipitation with methanol and completed 

by redispersion in hexane. The resulting product constitutes the Cd/Se cores of many 

QDs. The second step served to generate a shell around the initial core. For example, a 

Zn/S shell was synthesized by using the precursors diethylzinc and 

hexamethyldisilathiane. Equimolar amounts of the precursors were dissolved in TOP 

inside an inert atmostphere glovebox, which were then transferred to a funnel onto the 

top of the reaction flask that already contained the Cd/Se cores under a heated 

atmosphere ofN2. The precursors were carefully injected at specific temperatures 

according to the desired final dot size. This two-fold process of core and shell creation is 

the general process for the synthesis of most QDs (Medintz 2005). 
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Synthesis of QD-Porphyrin Complex - To attempt the conjugation of porphyrins 

with QDs, a primary protocol from Invitrogen (2005) was studied and modified. Trials 

without quantum dots, containing only diethanolamine, DCC, HOBT, and porphyrin, 

were performed to determine the amounts of each reactant that would be sufficient for the 

detection and viewing of a final product on UV -vis and the fluorescence 

spectrophotometer, and to assess which technique for the reaction set-up/environment 

was best. 

The best experimental set-up for coupling the QDs with the porphyrin structures 

was determined strictly through trial and error - although the previous reactions using 

diethanolamine were conducted in fairly small amounts, the reactions with QDs would 

have to be on a nano scale. As a result, the same weights of DCC, HOBT, and H2TPPC 

were used, with those amounts being dissolved and diluted in volumetric flasks using 

methanol, from which microliter amounts of each were used. The initial reaction 

equipment set-up included a microscale flask and small stir bar. This, however, proved to 

be too large for the microliter amounts of reactants being used and a 1 mL centrifuge tube 

held to a vortex mixer by a ring stand (to ensure constant shaking) was decided upon. 

The first round of dilutions and reactions proceeded as follows: 

H2 TPPC, 0.25 g, was dissolved in a 100 mL volumetric flask, 0.313 g DCC in a 

10 mL volumetric flask, 0.205 g HOBT in a 5 mL volumetric flask, and 0.160 g of 

diethanolamine in a 5 mL volumetric flask. Then, I mL of the H2 TPPC was diluted from 

the first flask to a second 100 mL volumetric flask. These dilutions were then followed 

by an initial trial reaction (with no QDs), which consisted of250 ~L of diethanolamine 

and 10 ~L of DCC, HOBT, and H2TPPC each. This mixture was stirred in a microscale 
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flask for 2 hours and then purification was accomplished by running the product through 

column made of a 1 mL syringe containing Sephadex LH-20 and utilizing 50/50 

methanol/H20 as the eluent. The initial drops to elute from the column were assumed to 

be unreacted DCC and HOBT and were discarded. The following collected fraction was 

then diluted using methanol and analyzed using UV -vis spectroscopy. This first trial 

reaction was successful in that a UV-vis absorbance maximum was observed at 415 nm, 

which is indicative of the presence of porphyrin in the solution (the porphyrin so ret band 

is located at 415 nm). From this information, it was determined that dilutions of the 

original weights of reactants and the microliter amounts used were indeed appropriate for 

the reaction to be detected by UV-vis spectroscopy and fluorescence spectroscopy A few 

more practice reactions were completed with less than adequate results, but a final 

determination of reactant amounts and apparatus set-up was eventually reached. 

Due to the limited volume ofQDs available for use, UV-vis techniques were used 

to once again determine approximate concentrations that would be appropriate for 

achieving a successfully coupled product that could be characterized using the 

fluorescence spectrophotometer. The previously mentioned solution that displayed the 

characteristic porphyrin peak at 415 nm was used as a reference in concentration and 

color to approximate the necessary amounts of not only QDs, but the more dilute version 

of the porphryin to be used in the coupling reactions (Table 2). 
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Table 2: Trials to Compare Color of Reference 

Trial # Porphyrin (~L) Methanol (~L) 

1 10 990 

2 5 995 

3 7.5 992.5 

4 12 988 

5 20 980 

6 15 985 

After running 6 trials, trial number 1 was selected as being the closest in color and 

concentration to the earlier solution and it was easily detected by UV -vis spectroscopy. 

This process helped to determine that 10 ~L would be an appropriate amount to use in the 

coupling reactions for both the porphyrin compound and QDs. 

Following trial reactions void of QDs, UV -vis techniques were used to determine 

the approximate concentrations of QDs and porphyrin that were used. UV -vis analysis 

also led to the determination that the more concentrated porphyrin from the original 5 mL 

volumetric dilution (versus a dilute version in a 100 mL volumetric flask) worked best in 

trial reactions using QDs. Successful coupling was immediately achieved using the 

fo llowing components: 

Ten ~Leach of QDs and concentrated porphyrin as well as 50 ~L of diluted DCC 

and HOBT were added to a centrifuge bullet, wrapped in aluminum foil , clamped on a 

ring stand, and shaken on a vortex mixer for 2 hours. When using the QDs, care was 

taken to handle them with minimal light exposure while wearing protective gloves at all 
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times. After being shaken for 2 hours, the solution was purified through microscale 

column chromatography using Sephadex G-50 and methanol as the eluting solvent. As 

before, the first drops to elute from the column were assumed to be unreacted DCC and 

HOBT and were discarded, and the final product was collected for characterization. 

Characterization of the QD-porphyrin Complex - To accurately determine 

whether or not successful coupling of the porphyrin structure(s) with QDs occurred the 

collected reaction product was analyzed using a Hitachi F-2000 fluorescence 

spectrophotometer. The reaction mixture was transferred from the small glass HPLC vial 

in which it was collected from column chromatography, to a plastic cuvette followed by 

the addition of methanol to dilute the solution to the appropriate level to be analyzed by 

the spectrofluorimeter (approximately 2/3 of the 1 mL cuvette). The QDs being used 

were labeled as 620 nrn Cd/Se quantum dots, so Ocean NanoTech LLC was consulted to 

determine which excitation wavelength would exhibit the desired fluorescence at 620 nrn. 

The company verified that in order to obtain the desired optimal fluorescence of those 

particular dots at 620 nrn, the excitation wavelength would need to be set at 500 nrn. 

Various solutions were run using the fluorescence spectrophotometer, including a 

methanol blank, 10 11L of QDs in methanol, I 0 11L of porphyrin in methanol, and finally 

the reaction product. The first three solutions were analyzed in order to obtain 

reference/standard peaks at 500 nrn, 620 nm, and 650 nm respectively. Data for four of 

the solutions ' emission spectra were obtained and viewed, with appropriate rescaling of 

they-axis incorporated in the analysis if necessary. 
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RESULTS: 

Before attempting a coupling reaction, UV -vis techniques were used to veri fy that 

the porphyrin complex had in fact been synthes ized and to determine appropriate 

amounts of reactants to be used to ensure detec tion by the fluorescence 

spectrophotometer. The porphyrin did display the characteristic soret band at 4 15 nm, 

validating the assumption that H2TPPC had been successfully synthesized and ensuring 

that the methods for generating both H2TPPC and H2TPPEA were correct (Figure 9). 

Figure 9: UV-vis Spectrum of H2TPPC 
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Reactions were then used to attempt coupling of porphyrin structures with the QDs, with 

the reaction product being analyzed by a fluorescence spectrophotometer. First, the 

separate reaction components were analyzed using the instrument, including methanol, 10 

ML o f H2TPPEA in methanol, and 10 ML QDs in methanol. The fo llowing emission 

spectra were obtained . 
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Figure l 0: Emission Spectra 
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10 B: Quantum Dots in Methanol- peak at 620 nm 
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10 C: Porphyrin in Methanol- peak at 650 nm 
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10 D: Successful Reaction- Porphyrin peak at 650 nm with QD shoulder at 620 nm 
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As expected, the coupled complex exhibited a strong peak at 650 nm and a shoulder at 

620 nm, indicative of the presence of a conjoined product of porphyrin and QDs 

respective! y. 
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CONCLUSIONS: 

Basic conclusions as a result of this project include the following: 

1. H2 TPPC was successfully synthesized and characterized using UV -vis spectroscopy. 

2. H2 TPPEA was successfully synthesized and characterized using UV -vis spectroscopy. 

3. A protocol was developed for coupling QDs with porphyrins. 

4. H2 TPPC was successfully coupled to QDs as determined by fluorescence 

spectroscopy. 

Future research may consist of synthesis, purification and characterization of a 

metallated porphyrin complex, which would then be coupled with QDs - more 

specifically, the addition ofZn to the porphyrin complex followed by attempted coupling 

with QDs and the addition of hexadiamine through the aide of a BOC group followed by 

attempted coupling with QDs. Cells could then be treated with the coupled complex, 

exposed to light and resulting changes in their growth and potential fluorescence could be 

monitored and analyzed. The outlook for this area of research appears hopeful as more 

specific coupling protocols are developed, continued variations in the structure and 

components of both porphyrins and QDs are synthesized and used, and methods for 

further tuning of fluorescence and tumor specificity are achieved. Overall, as porphyrin­

based compounds can become more water soluble, then they are in tum more appropriate 

for use in medical treatments and procedures. The possibility that these successfully safe 

compounds can someday be used in conjunction with highly efficient quantum dots will 

continue to serve as a catalyst in generating interest in the coupling of the two 

components for use in medical treatments that seek to improve the well being of patients. 
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