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PARITY PERIODICITY: AN ELIMINATIVE APPROACH TO 
THE COLLATZ CO::"''JECTURE 

Al'STI:'\ PIIILLIPS 

AllSTrtA<"T The 3n + l Conjecture ~tate> that when the Collatz function is 
applied repeatedly to an initial value, the sequ<•nce of values generated alway> 
com·ergb to 1. regardles:. of the starting value. This pa~r strengthens the 
claim that all such -.equenc~ are convergent by showing that certain type-. of 
nonconvergent sequences cannot exist Specifically. no sequence with parity­
periodic values can exist This eliminates all po,.,~ible nontrivially p<'riodic 
scquenc~ and all divergent s<·quenc~ with periodic parit\', Therefore, if a 
counterexample to the cOnJecture ex1't.~, It must be a divergem -.equenre who:;e 
\'alues display no panty penodic1ty. 

1. I :'\TRODL CTIO:o\ 

:\!any of l he most alluring topics and problem~ in mat hemal ic~ consist of a simple 
proce::;s that generate~ complex or unexpC'cted re,ults. Th<' :3n + 1 problem. also 
known a.'> the Collatz Conjecture (among other names}. bone ,.,uch problem -1]. 
The process im·oh·ed is simple: start with any positive integer 11 and appl~ 1 he 
Collatz funclwn: 

C(n) 
{

3n + 1 

n 
2 

if 11 is odd 

if n is even, 

producing another positive integer. Repeating this algorithm with each succt>~:>.-;ive 
output generate., a sequence H(n), the J/ail~tone Sequence of n. where 

H(n) = {n. C(n). C(C(n)). C(C(C(n)))) .... } 
2 3 = {n. C(n). C (11). C (n) .... }. 

The proce::;s stops as :-.oon as it reaches the value 1. For example. 

H(5) - {5.16.8, 1. 2.1} 

and J/(7)- {7. 22. 11. 3~.17. 52. 26. 13, 10. 20.10. 5. 16. b. I. 2.1}. 

Observing hailstone sequences over a broad range of ::.tartmg values leads to the 
main conjecture· for all starting values, l he proce-;s reaches 1 after a finite number 
of steps. Formally. 

Conjecture 1 (3n- 1 Conjecture). 

For all n E z+. there eJ"'sls 80me k E Z ,.,uch that Ck (11} 1. 



2 .-\ll!:;TI;\" PHILl.IPS 

While the conjecture hn:. been verified for roughly all n < 1017, the general case 
remains unproven 121 St<U is tical and heuristic nrgumenl!> pro,· ide ~nw evidence 
that the conjecture is true 11·. \\'hat complicaH'~ the :3n 1 prohlPm is that even 
though the Collatz function b :.nnple, each haibton<• s£'qucncc follows a ~emingly 
random path, and ther<' are fC\\ immediately dis<·<>rniblc pattems among hailstone 
~equences ranging o\·er a large s<•t of starting valm•s (.~u F1gur·t·.~ 1. 2. l~ 3). The~e 
:.<·emingly random paths an• remini~cent of the way haibtones ri~e and fall unprt>­
rlictably in :.torm clouds before inevitably falling to the ground. inspiring tlw name 
of the sequences. Essentially, the task of thb problem is to show that all hailstone::. 
do indeed fall eventually. 
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Figure 1: Graph of l1 (11) for 11 = 27 . 
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Figure 2: n vs L 11). the l<'ngth of IJ(n). 
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Figure 3: 11 v~ P(n). the high<~-,t mlue J/ (11) attains. 

2. ELI~II;>;ATJ\'E APPROACH 

To begin analyzing t lw problem, ob~rve that an~ gh·en haibrone :-.equenrP mu:-.1 
exhibit one of three possible behavior::.: 

{1} It ront·Pryes to 1 aftPr a fini te number of steps (notated H (n)- 1}. 

(2} It is perwd1c C"(11) Cb(n) for ~Ollll' po~iti\·e inl<'ger::. a > b. \otice that 
:sine<• we define the prot·<•,::; to ,;top at 1. II (I) = { 1}. However, tf \\(' remo\'e 
that condition. /l{l} = {1.·1. 2.1. 1. 2 .... }. forming the lrivwlly p(:T·iodic M!JUtnce. 

From now on. when W(' ref<'r to periodic M'qucnce:-.. we are referring to nontril'iaJly 
JWriudtr. .,fquence . .,. which neither contain nor conw!rge to 1. 

(3) It cinvyes (H(n) • oc). For any gtv<'n value J' a '>Pqucnce attallls, there are 
c\ finite number of posit i\e in teger::; less I h<lll J'. So e\·cntually t he ,;equence mu:st 
ei ther exceed :r or reach c\ n\lue that has already occurred in the sequeuce, iu which 
case it b periodic. Hence, a nonconverg111g. nonpenodic ::-equence must increase 
without bound {though not strictly so) .\ote that since H (11) - 1 nwans H(n) 
artually cquab 1 e\'elllually, we need not consider the ca::;e where H(n)- a. a i: 1. 
Such a sequence would fall under {2) or (3). 

Since the 3n + 1 Conjecture states that ( l) ts I rue for all positive intcg<'rs 11, climi­
nat ing possibililie::; (2) and (3) for alln would provr the conject urc. [not hc•r words, 
~bowing that no div<'rgcnt or nonlri,·ially prriodir hatl~tone sequence•, ('an exbt 
would force all ;,equrHct•s to converge to 1 Our approach succeeds in elimiuat iug 
all nont rivially periodic :-t·quence:, and cl'rtain typr-:-, of di\·ergem ::-eqUl'IICI's, 

3. :\ OT \ TIO:'\ 

Sin<'r 3n ..... l is evm if 11 is odd, w<• <·an shortrn thr procrss b~· rrdefini11g the 
Collatz funcl ion ru; 

C'(n) 
{ 

311 +...!. 
2 

11 

2 
if 11 is en~n. 

if II i::; odd 
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\\'e will u:.e thb definition of C(n) from now on. In addition. it will b<.' importalll 
to expre::.~ haibtone ~equenc~ in terms of parity {using E for even \·alues and 0 
for odd \·alues). For example. l/{5) = {.5.8.'1. 2.1} = {0. E. E. E. I}. Our proc~::. 
of elimination focuses first on sequences of infinite length that contain odd values 
spaced pNiodically apart. A few examples might look like 

H(n)={O,O.O .... } and II(rt) {O.E.O.E .... }. 

Define the odd perzod p of t-.uch sequences to be I he period with which I he odd \alue::. 
occur. The two ::.equenccs abo\·e have odd periods p = 1 and p 2, respectively. 
For H(n) = {0. E.£. 0. E. E .... }. p = 3. :\otice that p ibelf does not have to be 
odd; we are simply concerned with sequence, containing periodic odds. 
Final!~·. define the sequence F;(n) to denote the successive odd numbers in a se­

quence with odd period p. Specifically, F;(n) the {k + l)st odd numb<'r in the 
sequence, starting with fi;(n) n. So in the :-.equence 

fl(n) --= {n.E.01 .E.02.E.OJ.£ .... } 

and so on. 

·1. APPLYING THE ELI!\11!\ATI\'E APPROACH 

:'llotice that if H(n) ~I. then H(n) looks sonH'thing like 

{I) J/(n} - {n ..... Et.E2·····£k.l}. 

when• E 1 ....• Ek i~ a sequence of powers of 2. Once H ( n) reaches a power of 2. it 
immediately collapse::. to l. and H(n) can onl) rC'ach I b) going through), 1, and 2. 
{If we con::.ider the rcvcT'$e mappmg of n the valuE:':, m for which C(m) n · then 
1 only maps to 2, which only maps to I. which only maps to 8.) As a result, the 
problem of eliminating nontrivially periodic and divergent sequences b equivalent 
ro showing that there exist no sequences H{n) that cannot be expressed in the form 
of {1). for some E 1 ....• Ek. 

A logical cl&>:> of sequences to consider fir:;t would be those with some odd period 
p. Apart from the trivial cycle, they must either he nontrivially periodic or divergent 
since they are infinite in length. For now, we will assume that the:>e sequences 
begin with odd n \'alues: by eliminating them. we abo eliminate all sequence:; 
containing a tail of periodically spaced odd-,. (For example, eliminating IJ{n) -
{O.E,O.E .... } would also eliminate H{n) {E.O.E,O .... }.) In addition. we 
are only considering sequences with a ~ingle odd period. Later. \\·e will discuss 
sequence::. containing a composition of odd periods. such a:, 

FI(n) {0. E, 0. 0, E.G. 0. E. 0 .... }. 

\\'e now assume that such a hail::.tone sequence with odd period p exi-;ts and show 
it leads to a contradict ion. To begin. consider the s<'quence 

Jf(n) = {0.0,0 .... }. 

which contain::. an infinite ~equence of odds. starting with n. Obviou-.,ly, it i-., not 
convergent. Since each term i::. odd. we haYe the recurrence relation 
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Ft+ 1(n) = C(F1k(n)) 

3F1k(n)- 1 
2 

f1(n) = n. 

By iterating this sequence. it appears that. in general. 

2k 

= 
3k(n + 1)- 2k 

2A 

=(~Y'(n+1)-1 for k = 0, 1. 2, ... 

We can conduct a similar process for p = 2 (H(n) = { 0, E. 0, E .... }), since 

By iterating again. it appears that: 

)

k 

Ff ( n) = ( ~ ( n - 1) + 1 for k = 0, 1. 2, ... 

And similarly for p = 3 (II(n) = { 0, E. E. 0. E, E .... }), it appear::. 

5 

:\otice that there i::. a pattern between p and the generalized form for F;(n). which 
leads us to our fir::.t theorem. 

Theorem 1. For a sequence H(n) with odd period p E z+, 

k (3)k( 1 ) 1 
FP ( n) = 2P 11 - 2P - 3 -r 2P - 3 ' 

Proof. :\otice that for p = 1 and k = 0, 

Ff(n) = 1 · (n + ~) - ~ = n 
2 2 

in agreement with our definition. 

k = 0.1, 2, ... 
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We now induct on k. ::,howing that, for a coni:>tant p, 

1 j... __ 

2P- 3 

implies pA·-1 n = - n--- --(
3)k-t-l( 1 ) 1 

P ( ) 2P 2P - 3 + 2P - 3 . 

Assmn<'. for a given p and k, that 

(3)" ( F1~(n) = 
2 

n 1 ) l 
2P- 3 'T 2P- 3. 

Since II{n) has odd period p. the next odd after F; ~11) i~ 

( 3F~(nHI) 2 _ 3Fp"(n) + 1 
FPA..-1 (n) 2P I - 2P 

:.ince \\e apply 3"{1 to the odd F;(n) and then ~ to the (p- l} ::,ubsequent even 
values. Expanding thi::,. we find that 

= 2P 

( 3k4 I ) ( = -- II 
21'k+p 

-- + l ) 2P 

2P - 3 2P{2P 3) 

( 3k+l ) ( 1 ) 1 
2P(A+I) fl 

·-- - --
2P 3 21' 3 

(:P) k+l (n 1 ) 1 
~3 - 2P-3. 

Therefore. for a COIU>lant p. 

F;(n) = (:P y- (n 1 ) 1 
2P3 + 2''-3' 

k = 0.1. 2, ... 

Finally, notice that for all p, 

Fg(n) = (:, r (n -2, ~ 3) 
1 

2P 3 
n. 

in accordance with our definition. 

\\'e have ::,hown that ~(n) i::; true for all p, and that F;(n) implies F;.:.. 1 (n) for all 
k. Since the ba-;e ca::;e with k ::::: 0, p = 1 is true. we conclude that in general 

(3)"( 1 ) l 
2P II - ~ + 2P - 3 for all k. p. 

0 
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\ \'e now show that this formulation of F; (n) exclude:. the exi::.tence of hailstone 
sequences with any odd period p. 

Theorem 2. There exists no pos1tive mtcger n such that H(n) contains an infimte 
sequence urlth any odd period p. 

Proof. Assume for contradiction that there doe:. exi::.t some n where H(n) contains 
some odd period p. Then by Theorem 1. 

k 3 1 1 
( 

k ( ) FP ( n) = 2P) 11 
- 2P - 3 + 2P - 3 for all k·. 

If H(n) is truly a hailstone sequence, then for each k = 0.1, 2 ..... F;(n) must 
equal ::,ome positive integer. denoted mk (which varie::. with k). In other words. for 
e,·ery k there must exist some mk such that 

(~)k (n- _1 ) ~ _1 =mk. 
2P 2P - 3 2P - 3 . 

or 

k ( 1 ) pk ( l ) 3 n--- = 2 mk- -- . 
2P- 3 2P- 3 

:\1ultiplying through by (2P- 3), 

Substituting a= (2P- 3) n- 1 and b = (2P- 3) mk- l, 

Remember that a depends only on p and n and is therefore constant. whereas b 
depends on p and mb which varies with k. 

Thus. it must be true that: 

Given a, for every k there exists some b ::.uch that 3ka = 2Pkb. 

Now let a= 2t r. where 2£ i!> the highe::.t power of 2 that divides a (C = 0, l, 2, ... ). 
Then 2 1 r. 

Now we have: 

For every k there exbts some b such that 3k2f r = 2Pkb. 

HoweYer. once k > ~· we require: 

There exists some b such that 3kr = 2pk tb. 

Since pk - £ > 0. 2 divides the right side of the eqm\tion but not the left side, 
and we have reached a contradiction. Therefore, it is false that there exists some 



8 AUSTI:"' PHILLIPS 

integer b for every k. and consequently it is fabe that there exists some integer mA· 
for ev<>ry k. 
lienee, the assumption that there exist::. ::.ome H(n) with odd period p (for any p) 

i::. false. C 

:\ote that the problem i~;n't that the above equation can't be satisfied; the prob­
lem is that it can't be satisfied with positive integers. lnt(•re~tingly. thb argument 
is compatible with the existence of the trivial sequence II( 1) = { 1. 2. 1. 2, ... } . The 
equation 

is satisfiable with integers only if a= 0 {ju::.t let b = 0 for all k). Since we assigned 
a ( 2P 3) 11 l , we have: 

or 

0 = (2'' 3)11- 1. 

1 
n = 2P 3' 

and n is an integer only if (2P - 3) 1. giving p = 1 or p = 2 (corresponding to 
11 = -1 and n = 1. respecti\·el:>). Since the parameters of the problem do not allow 
n -L we conclude that the trivial ::.equence with n = 1 and p 2 is the onl~· 
periodic ::.equence of this kind. 

5. GE:--:ERALIZI~G THE APPROACH 

Theorems 1 & 2 show that no ::.uch H(n) sequence e:xists wtth a 8inglc odd period 
(e.g .. l/ (n) {O.E.E.E,O.E.E.E .... }). but there still remain a number of 
po::.sible M>quence::. with more complex periodicity. For example. the abo\·e theorem::. 
would not apply to sequence::. containing a composition of two or more odd periods 
::.uch a::. 

lf(n) = {0. E. 0. E. E. 0. E. 0. E, E .... } 

or JI ( n) = { 0. 0. E. 0. 0, E .. .. } 

Fortunately. we can usc the ::.ame techniques to disprO\·e the existence of any pe­
riodic haibtone ~quence. ~loreover, we will show that no sequence.-. with periodic 
panty can exist. which also rule::. out divergent sequences with a recurring sequence 
of evens and odd::.. 

Fir::.t, ::.uppo~e there exists ::.ome parity-periodic haibtone ~uence (i.e .. H(n) 
contain::. some :-,equence of even and odd paritie~ that repC'ats indefinitely). Redefine 
Fk(n) in the following way: f'l(n) = n, the beginning of the repeated parity 
::.equence; F 1 (n) is the next value at which the parity sequence begin::. to repeat: 
and so on. For example, in the sequence 

ll(n) {n,O.O, E.O, E. 0,0. E. 0 1 ,0. 0, E. O.E. 0.0, E. 02 .... }. 

parity !;C'qucncc 

F 0 (n) = 11, F 1(n) 0 1, F 2 (n) = 0 2 . etc. While in this case the ::.tarting value 
11 is odd. we no longer require that to be true. !:'\or do we suppo::.e an) kind 
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of pattern within each parity ::,cquence; the only requirement I!> that the parity 
:,equence repeat:. indefinitely. 

~otice that the proc<.>~s of iterating from Fk(n) to Fk..-1(11) reduc<.>s to some 
compo:.ition of the functions f(n) = 3

";
1 and g(n)::::: i· This fact enables u:. to 

d<.>velop another recurr<.>nce r<.>lation among th<.> Fk(n) value:.. 

Lemma 1 . 

Fior all k. F k·+l (11) -- 3a pk2(1c!) + b r . . b 
1or .~onu nonnegatn•f; mt£·gcrs a. . c. 

Pr·oof. It will suffice to ::-how an even stronger statement: that <.>very element in a 
hailstone sequence can he expres:.ed in the form 

Ck(n)- 3an + b 
2C for ~:>ome a. b. c. 

For k = 0, we haYe (a, b. c) = (0. 0. 0): for k = l. we have 

so (a, b. c)= {1.1. 1) if 11 is odd and (0,0. 1) if 11 is even. 

~ow as::.ume for some 1,: that 

3CA(n}+l 3°+1n-(3b+2c) 
CHI ( 1l) = ---..:....,...-___.:. 

2 2~+1 

which is in the requir<.>d form. If Ck(n) is even. 1 hen 

Ck-L(,1) = Ck(n) 3°11 + b 
' 2 2c I . 

also in the required form. Thus, every element in a given hailstone sequence can be 
expre::.,ed in this form. In particular (going back to our parity-periodic ::,cquence). 
pk+1(n) is an element of H(Fk(n)). and tlwrefore can be expre....,sed in the given 
form, proYing Lemma 1. 

Given this convenient recurrence relation among the pk (n) values, we ::.imply 
iterate the Fk(n) ~equence ::.tenting with pO(n) n. Since we are m;suming th<.> 
sequence is parity-periodic. the ::.ame values of a, b. and c will de:,cribe the iteration 
from any Fk(n) to the next. and therefore a. b. and c will remain constant. Through 
iteration, we can derive a general form for Fk(11). 

Theorem 3 . If H (n) i.\ a parity-periodic haiL-tone Mquence whl-rc 

pk+l(n) = 3aFk(n) -rb f. b 
2

,. or 80me a, . c, 

then 

k = 0. 1. 2 .... 
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~ot<> the ::.imilarity to Theor<>m 1. 

Pr·oof. For J..· = 0. _FO(n) = 11. ~ow as::.ume for some k that 

Then 

3a [ ( ~~ ) k ( 1l + 3• ~2r ) - 3• ~ 2r] "T b 
=--~--~----~~------~--

2" 

0 

~ow that we have a generalized form for Fk (11), we can U!>e lhe same technique lo 
eliminate the exbtence of any parity-periodic M>quence. 

Theorem 4. There ex-ist ... no positive integer 11 8uch that H(n) contain., an infinite 
partly-pertodtc .sequenc1. 

Proof. Suppose for contradiction that there exist~ ~omen !>uch that If (n) ha::. pe­
riodic parity. By Theorem 3. 

(3")k ( b ) 2r 11 +- 311 - 2<' 
b 

:311 - 2<'. k = 0.1. 2 .... 

for some nonnegati\'e integers a. b. and c. If If(n) b a true haibton<> ~('quence. then 
for each k, Fk(n) must equal some integer mk· Formally. 

(
'3" )k ( b ) For each k there exists some mk such that ' n + -----
2c 311 2<' 

Rearmnging, we haYe 

3ak (11 + _b_) 
311 2C 

rk ( b ) 2 mk t --- . 
311 - 2<' 

And multiplying through by (311 - 2c). 
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Substituting :r = (34 2")n + b (which is constant) and y = (3"- 2c)mk (which i::. 
variable), we luwe: 

Given :r. for every k there exi::,b ::.ome y ::.urh that 311 k:r = 2""y. 

Cp to thi:; point, the rea::.oning has been similar to that in Theorem 2. However, 
we must now divide the argument into two cases. Fir:;t. a::.sume that .r i= 0. :\ow 
let .r 21r. where 2' i~ the highe::.t power of 2 that divides .r. and 2 l r. 

We require 

However, once k > ~-
3ak . ?rk-l r-- y. 

Sinre ck € > 0. 2 divide::. the right ::;ide of the <>quat ion but not the left side, and we 
have reached a contradiction. Therefore, it i::. false that there exists some integer y 
for every k. and con::,equ<'ntly it is fabe that there exists ::;ome integer mk for every 
k. Hence. the assumption that there exbts any such H (n) is false, proving then: 
c:ri.~t no hailstone sequence . ., with period1c pa1'liy. 0 

6. FUTCRE \\'ORK 

Thb proof works perfectly under the condition that J' i= 0. Cnfortunately, it is not 
clear that :r b always nonzero. If x = 0, then the ::;tatement 

Gh·en :r. for every k there exi::.ts ::;ome y such that 3°k.r = 2rky 

is sati::.fiable with integers (ju::.t let y = 0 for all k). Since :r = (3a - 2c)n +b. we 
must have: 

or 
b 

n = ---. 2(' - 3(1 

Pro,·ing Theorem 4 in general depend::. on thb formulation of n being impo::;sible 
or contradictory. Since 11 mu::,t be a po::.itive integer, we could I ry to reach a 
contradiction by ::;howing that the expre::;::.ion 

b 
2l' :3" 

i::; either negative or not an integer. For exampl<'. by our definition of the parity­
periodic sequence as 

Fk+l(n) = 3a pl' (n) + b 
2c ' 

the constant b must be positive since each F"(n ) come::. from ~ome compo::.ition of 
311 + l d n 
- - - an -. 

2 2 

:\ow we can e::.tablbh condition~ for which lh<' denominator 2r 311 is negative. 
forcing n to be negative. 
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if 

or 
c <a log2 3. 

i\Iorrover, we can expre:,s a and c in terms of the number of even and odd iteration~ 
within a parity sequence. Sp£>cifically, if a gh·cn parit~· :-.cquence con:-.bb of applying 
3n; 1 

a total of a tim£>::. and ~ a total of J3 tim£>_-., then a =a and r. = n + [3. 

Thu:,, 
o + J3 < a log2 3 

or 

This re:,ult give::. us condition:. under which a contradiction is reached. If a repeating 
parity sequence consists of o odds and J evens and J < a (log2 3 - 1), then the 
starting \:alue n mu~t be n£>gati,·e. which is impo~sible. \\'e have therefore eliminated 
all parity-periodic hailstone ::.equences except t ho,e for which 3 > o (log2 3-1). The 
task remains to show that this latter inequalitY also produces a contradiction. 

Pro,·ing Theorem J without having to assume ;r I 0 would be immensely helpful 
since it would eliminate all sequence:, whose actual values arc periodic (i. e., all 
nontrivially periodic ::;equences) as well as divergent sequence!> whose valu£>s display 
periodic parity. If ThE'orem 1 b true. then any possible counterexample tot he 3u-l 
Conjecture would have to b<.> a dh·ergem sequ£>nc£> whose values display random or 
nonperiodic parity. 
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