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Slow Plastic Creep of 2D Dusty Plasma Solids
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One Bear Place 97310, Baylor University, Waco, Texas 76798, USA
3Ouachita Baptist University, 410 Ouachita Street, Arkadelphia, Arkansas 71923, USA

(Received 24 September 2013; published 9 July 2014)

We report complex plasma experiments, assisted by numerical simulations, providing an alternative
qualitative link between the macroscopic response of polycrystalline solid matter to small shearing forces
and the possible underlying microscopic processes. In the stationary creep regime we have determined the
exponents of the shear rate dependence of the shear stress and defect density, being α ¼ 1.15� 0.1 and
β ¼ 2.4� 0.4, respectively. We show that the formation and rapid glide motion of dislocation pairs in the
lattice are dominant processes.

DOI: 10.1103/PhysRevLett.113.025002 PACS numbers: 52.27.Lw, 62.20.Hg, 81.40.Lm

The direct in situ observation of dynamical processes in
bulk condensed matter is not yet available with atomic
resolution in both space and time. Femtosecond pump-
probe techniques can resolve atomic motion; atomic force
microscopy can detect atoms on surfaces; diffraction
methods provide information about the bulk structure;
but as long no method can combine all the benefits of
these techniques, we are limited to rely on phenomeno-
logical models and numerical simulations. Alternative
experimental methods have already proven to be helpful
for the qualitative understanding of classical collective
phenomena. Charged colloids suspended in a liquid envi-
ronment, and dusty plasmas (solid micron sized particles
charged and levitated in gas discharge plasmas) are both
interacting many-particle systems that show very similar
properties to conventional atomic matter, but at time and
distance scales easily and directly accessible with simple
video microscopy techniques. Both methods provide
insight into the microscopic (particle level) details of
different phenomena. Colloid systems are characterized
by over-damped dynamics, due to the liquid environment,
which makes them well suited for structural and phase
transition studies [1], while the weak damping in low
pressure gas discharges makes dusty plasmas perfect for
studies of wave dynamics, instabilities, and other collective
excitations [2].
In material science and metallurgy, creep is the time

dependent plastic strain at constant stress and temperature;
therefore, it is a special type of plastic deformation of solid
matter. In general it is a slow process driven by the
thermally activated movement of dislocations (dislocation
creep), vacancies (vacancy creep), or diffusion (Nabarro-
Herring and Coble creep). The applied stresses are below
the rapid yield stress resulting in atomic movements that are

crystallographically organized. The applied temperatures
are usually above ð1=2ÞTm, where Tm is the melting
temperature. The time (t) evolution of the deformation
(strain ε) at constant stress is often described by one of the
empirical formulas

ε ¼ ε0 þ δ ln tþ ϕt or

ε ¼ ε0 þ ϑt1=3 þ ϕt; ð1Þ

where ε0 is the immediate strain and δ, ϑ, and ϕ are creep
coefficients [3]. After a short transient phase (“primary
creep”), approximated as logarithmic (∼δ ln t) or using
Andrade’s law (∼ϑt1=3), this describes a steady-state
“secondary” creep, dominated by the last term, where
the rate ϕ is determined by the balance of work hardening
and thermal softening. Under such circumstances the
steady state creep is fairly well represented by the
Norton equation:

_ε ¼ ∂ε
∂t ¼ CðTÞσα; ð2Þ

where σ is the stress in the system, CðTÞ is a factor
characteristic for the material and the experimental con-
ditions (temperature, grain size of a polycrystalline sample,
Young modulus, etc.), and α is the Norton exponent with
1 ≤ α ≤ 10 (from experiment, depending on the dominat-
ing microscopic process). Simplified theoretical models
reduced to thermal activation of independent dislocation
glide movements in the lattice (Harper-Dorn creep) predict
an exponent α ¼ 1 in Eq. (2) [3–6]. This phenomenological
description was derived mostly for tension strain, but can
be applied for shear (along the x axis in our notation) as
well, with the substitution ε → γ, where γ ¼ ∂x=∂y and
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_γ ¼ ∂vx=∂y. In the case of large grained pure materials
(mostly metals) at intermediate stresses and temperatures,
the deformation is realized by the creation and glide
movement of edge dislocations with Burgers vectors ~b,
resulting in shear rates _γ ¼ ρ~b ~v (Orowan equation), where
ρ is the density of mobile dislocations with average velocity
~v. In this model the dislocation density ρ is expected to
depend on the shear stress as

ρ ∝ σβ: ð3Þ

Simple theoretical arguments and tensile experiments on
single and polycrystalline copper predict an exponent
β ≈ 2 [7].
The effects of shearing forces and liquid state viscosity

were investigated in early years of dusty plasma research
[8–11]. More recently, effects of shearing forces on the
microstructure were experimentally investigated in greater
detail including liquid flows and plastic deformations of a
crystalline solid [12–17]. Here we present dusty plasma
experiments providing the link between the standard,
macroscopic measures used in material sciences and metal-
lurgy to describe plastic deformations, and the detailed
microscopic information provided by dusty plasma
experiments.
We have carried out two independent experiments on

single layer crystalline dusty plasma systems aiming to
investigate the microscopic details of the shearing creep
deformation. The first experiment was performed in the
Hypervelocity Impacts and Dusty Plasmas Lab (HIDPL) of
the Center for Astrophysics, Space Physics, and
Engineering Research (CASPER) at Baylor University,
Waco, Texas, while the second series was carried out at
the Institute for Solid State Physics and Optics, part of the
Wigner Research Centre for Physics, Budapest, Hungary
(referenced as “TEX” and “BUD” in the following). Details
of the dusty plasma apparatuses and data processing
techniques can be found in earlier publications [16,18].
In both cases the dust layer was illuminated by an extended,
spatially linearly modulated laser sheath introducing an
external force FxðyÞ ¼ F0ðy − y0Þ on every particle, as
illustrated in Fig. 1.
Several video sequences with different powers of the

manipulating laser PL were recorded, including the PL ¼ 0
case, which was used to extract the wave spectra of
thermally excited density fluctuations, which fitted with
lattice phonon dispersion curves of 2D Yukawa systems
[19,20] resulted in system parameters used during the
evaluation of the PL > 0 data. These parameters are
collected in Table I.
The elementary steps of the data evaluation process are

illustrated in Fig. 2 and include (a) the identification of the
particles and determination of the regions of interest,
(b) measurement of the pair distribution function gðrÞ,
(c) performing Delaunay triangulation to determine true

nearest neighbor bonds and identify defects, defined as
particles with neighbor numbers ≠ 6. The measurement of
the particle velocities includes the determination of flow,
peculiar and particular thermal velocities. Examples of the
induced flow velocity profiles vxðyÞ for laser intensities in
the range of 0.4 � � � 5 W are presented in Fig. 2(d), showing
a pronounced difference between the two experiments.
Linear velocity profiles were found in the TEX case, while
in the BUD experiments the velocity profiles decayed
exponentially. To benefit from both situations we have
defined the regions of interest [marked with red lines in
Fig. 2(a)]. In the case of TEX, to avoid complication with
the boundaries (including circulations) of the dust clouds
during the subsequent evaluation steps we consider only
particles within a circle with a diameter of about 75% of
that of the cloud. The shear rate _γ ¼ ∂vx=∂y is constant

L
x

y

FC

G
dust layer

Top view

FIG. 1 (color online). Scheme of the optical setup used to
generate the wide shearing laser beams. Main parts: L, laser
source (TEX, max 5.5 W@ 532 nm; BUD, max 1 W@ 440 nm);
G, laser line generator lens; C, cylindric lens; F, linearly variable
density filter.

TABLE I. System parameters derived from the structural and
dynamical properties of the unperturbed systems. Uncertainties
are estimated to vary from 1% (e.g., m, d, resolution) up to 10%
(e.g., q, κ).

Parameter TEX BUD

p, Ar gas pressure [Pa] 9.6 1.25
Prf , rf power at 13.56 MHz [W] 3.5 15
d, MF particle diameter [μm] 6.37 9.16
m, particle mass [10−13 kg] 2.04 6.08
N, particle number in field of view 1404 2810
Frames per second (fps) 60 29.7
Recorded frames per experiment 5500 17 000
Resolution [μm=pixel] 35.2 30
q, charge (e, elementary charge) 7250 13 600
n, density [106 m−2] 2.76 2.99
a, Wigner-Seitz radius [10−4 m] 3.4 3.26
ωp ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=2ε0ma

p ½rad=s� 55.1 63.5
λD, Debye screening length [10−4 m] 4.9 4.8
κ ¼ a=λD, Yukawa parameter 0.7 0.68
T=Tmelt from gðrÞ, see Ref. [21] 0.42 0.37
vth, average thermal speed ½10−4 m=s� 12.7 4.46
_γ0 ¼ vth=a ½s−1� 3.74 1.37
σ0 ¼ mnω0avth ½10−11 kg=s2� 1.34 1.68

Note: MF means Melamine-formaldehyde.
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over the whole y range. In the case of BUD. as the dust
cloud is much larger than the field of view of the camera,
boundary effects are of minor concern. On the other hand,
the velocity profiles show strong nonlinear shape. We
define ten slabs within the decaying tail [see Fig. 2(a)
right column] of vxðyÞ, where the shear rate within each
slab can be approximated as constant, but it changes from
slab to slab, providing the possibility of evaluating ten

different _γ values at once. The qualitative difference of the
velocity profiles is assumed to be related to the significantly
different Ar gas pressures, which, through friction, is
responsible for the energy dissipation.
The two quantities of interest, besides the directly

measured shear rate, are the defect fraction (proportional
to the dislocation density) and the shear stress in the
system. The former results from the Delaunay triangula-
tion. The latter is computed applying the formula

σxy ¼
1

A

�X
i

mvi;xvi;y þ
1

2

X
i

X
j≠i

rij;yFij;x

�
; ð4Þ

where A is the area of the region of interest, vi;x is the x
component of the peculiar velocity of particle i, rij;y is the y
component of the distance vector between particles i and j,
and Fij;x is the x component of the force acting on particle i
due to pair interaction with particle j. Summation over i is
for particles within A, while summation of j runs over all
particles interacting with particle i. To approximate the
interparticle forces, we use the widely accepted Yukawa
(screened Coulomb) model, with a pair potential:
ΦðrÞ ¼ q exp½−r=λD�=ð4πε0rÞ, where q is the charge of
the dust particle, λD is the Debye screening length, and ε0 is
vacuum permittivity. The values of these quantities are
listed in Table I.
The results of the data evaluation are presented in Fig. 3.

The experimental data points are approximated by func-
tions having the forms

Dð_γÞ ¼ D0 þ d_γb and σð_γÞ ¼ c_γf: ð5Þ
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FIG. 2 (color online). Illustration of the data evaluation process
for both experiments (left column, TEX; right column, BUD). For
the unperturbed cases, (a) example of particle snapshots with the
regions of interest, (b) pair correlation function, (c) defect maps
(upper triangle, particle with seven neighbors; lower triangle,
particle with five neighbors). (d) vxðyÞ transverse particle velocity
profiles for different shearing laser powers.
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FIG. 3 (color online). Defect fraction (upper row) and shear
stress (lower row) versus shear rate from both the TEX (left
column) and BUD (right column) experiments. Lines are
functional fits, see text.
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In a polycrystalline system at finite temperature, even
without external shear, the equilibrium defect (dislocation)
density D0 is nonzero, in contrast to the shear stress.
D0 corresponds to the immobile fraction of the disloca-
tions, which are excluded from Eq. (3). Least-squares
fitting resulted in bTEX ¼ 2.15� 0.5, bBUD ¼ 2.1� 0.3,
fTEX ¼ 0.95� 0.1, fBUD ¼ 0.8� 0.03 for the exponents.
Combining these results, we find that the defect density—
shear stress relation, as given in Eq. (3), is, at least in the
studied shear rate regime, a good approximation and has an
exponent β ¼ b=f ≈ 2.4� 0.4. Furthermore, the Norton
exponent in Eq. (2) is α ¼ 1=f ≈ 1.15� 0.1. These results
are consistent with both (BUD and TEX) experiments.
Taking into account the fact that the crystalline domains are
large, compared to the system size, these values of the
exponents suggest the Harper-Dorn creep [3–5] to be the
dominant process.
To support this statement, Fig. 4 shows an overlay of

subsequent defect maps (BUD, PL ¼ 0.6 W). This illus-
trates the formation and rapid glide of dislocation pairs
through the lattice, a typical scenario occurring frequently
in the system. In frustrated dusty plasma crystals such
individual processes have already been observed [22,23]
and studied numerically in detail [24].
In addition to dusty plasma experiments, nonequilibrium

molecular dynamics simulations [25] for a 2D particle
ensemble with N ¼ 46 000 particles were conducted, again
assuming a Yukawa interparticle interaction potential.
Particles were placed randomly in a rectangular simulation
box to match the ground state hexagonal lattice. After a
thermalization period, a homogeneous shear algorithm
was applied to generate planar Couette flow [26]. In the
algorithm the shear flow is induced with the Lees-Edwards
(sliding brick) periodic boundary conditions, which is used

in conjunction with the Gaussian thermostatted SLLOD
equations of motion:

dri
dt

¼ ~pi

m
þ _γyix̂;

d ~pi

dt
¼ Fi − _γ ~pyix̂ − τ ~pi; ð6Þ

where ~p ¼ ð ~px; ~pyÞ is the peculiar momentum of particles,
x̂ is the unit vector in the x direction, and τ is the Gaussian
thermostatting multiplier, calculated in a way to ensure
constant peculiar kinetic energy. The integration of this set
of equations is solved by the operator-splitting technique
[27]. During the simulations we track the positions and
velocities of particles and perform the analysis already
introduced for the experiments.
The simulations require as dimensionless input

parameters the homologous temperature T=Tm, and
_̄γ ¼ _γða=vth;mÞ, where vth;m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTm=m
p

is the thermal
velocity at melting temperature. Calculations are performed
for Yukawa screening parameter κ ¼ a=λD ¼ 2,
T=Tm ¼ 0.18 � � � 0.83, and _̄γ ¼ 0.05–0.5.
Figure 5 shows the computed shear stress and defect

fraction values versus the strain rate for a set of homologous
temperatures. The shear stress curves in Fig. 5(a) asymp-
totically join to a universal power-law function with a
Norton exponent of α ≈ 1=0.6 ≈ 1.7 at high shear rates. The
effect of temperature is most dominant at low shear rates,
where the system hardens with decreasing temperature,
while reaching Norton exponents up to α ≈ 1=0.12 ≈ 8 at
the lowest investigated temperature. The defect fraction in
Fig. 5(b) shows a similar, but somewhat weaker asymptotic
trend. The tendency of developing fewer defects at lower
temperatures in a steady-state configuration still dominates
over the effect of the external frustration.

FIG. 4 (color online). Defect maps of subsequent system
snapshots from the BUD experiment. Colors lighten with
elapsing time. upper triangle, particles with seven neighbors;
lower triangle, particles with five neighbors.
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FIG. 5 (color online). Computed shear stress (a) and defect
fraction (b) versus shear rate for a set of homologous temper-
atures. The bounding dotted lines in (a) show simple power law
functions with exponents as labeled.
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In summary, we have experimentally determined the
plastic properties of 2D dusty plasma single layers in the
polycrystalline phase. The macroscopic measures, like
the defect density—shear stress relation and Norton expo-
nent during slow deformations (creep) are fully coherent
with empirical models used to describe ordinary materials.
This fact supports the concept of using dusty plasmas as
magnified model systems of ordinary matter and provides
the possibility of studying a wide variety of many-body
phenomena on the particle (quasiatomic) level with spatial
and temporal resolutions easily accessible on the human
scale.

This research was supported by the CASPER project,
and Hungarian Grant No. OTKA NN-103150.
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